A Lyndon-Hochschild-Serre spectral sequence for certain homotopy fixed point spectra
HTML articles powered by AMS MathViewer
- by Ethan S. Devinatz
- Trans. Amer. Math. Soc. 357 (2005), 129-150
- DOI: https://doi.org/10.1090/S0002-9947-04-03394-X
- Published electronically: January 23, 2004
- PDF | Request permission
Abstract:
Let $H$ and $K$ be closed subgroups of the extended Morava stabilizer group $G_n$ and suppose that $H$ is normal in $K$. We construct a strongly convergent spectral sequence \[ H^\ast _c(K/H, (E^{hH}_n)^\ast X) \Rightarrow (E^{hK}_n)^\ast X, \] where $E^{hH}_n$ and $E^{hK}_n$ are the continuous homotopy fixed point spectra of Devinatz and Hopkins. This spectral sequence turns out to be an Adams spectral sequence in the category of $K(n)_\ast$-local $E^{hK}_n$-modules.References
- Andrew Baker and Andrej Lazarev, On the Adams spectral sequence for $R$-modules, Algebr. Geom. Topol. 1 (2001), 173–199. MR 1823498, DOI 10.2140/agt.2001.1.173
- J. Michael Boardman, Conditionally convergent spectral sequences, Homotopy invariant algebraic structures (Baltimore, MD, 1998) Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 49–84. MR 1718076, DOI 10.1090/conm/239/03597
- A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281. MR 551009, DOI 10.1016/0040-9383(79)90018-1
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- Ethan S. Devinatz, Morava’s change of rings theorem, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 83–118. MR 1320989, DOI 10.1090/conm/181/02031
- E. S. Devinatz and M. J. Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004), 1–47.
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368, DOI 10.1017/CBO9780511470882
- A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. MR 1417719, DOI 10.1090/surv/047
- P. G. Goerss and M. J. Hopkins, Resolutions in model categories, manuscript, 1997.
- —, Simplicial structured ring spectra, manuscript, 1998.
- Paul G. Goerss and Michael J. Hopkins, André-Quillen (co)-homology for simplicial algebras over simplicial operads, Une dégustation topologique [Topological morsels]: homotopy theory in the Swiss Alps (Arolla, 1999) Contemp. Math., vol. 265, Amer. Math. Soc., Providence, RI, 2000, pp. 41–85. MR 1803952, DOI 10.1090/conm/265/04243
- —, Realizing commutative ring spectra as $E_\infty$ ring spectra, manuscript, 2000.
- Michael J. Hopkins and Jeffrey H. Smith, Nilpotence and stable homotopy theory. II, Ann. of Math. (2) 148 (1998), no. 1, 1–49. MR 1652975, DOI 10.2307/120991
- Dale Husemoller and John C. Moore, Differential graded homological algebra of several variables, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69) Academic Press, London, 1970, pp. 397–429. MR 0310040
- Haynes R. Miller, On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981), no. 3, 287–312. MR 604321, DOI 10.1016/0022-4049(81)90064-5
- Charles Rezk, Notes on the Hopkins-Miller theorem, Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997) Contemp. Math., vol. 220, Amer. Math. Soc., Providence, RI, 1998, pp. 313–366. MR 1642902, DOI 10.1090/conm/220/03107
- Jean-Pierre Serre, Galois cohomology, Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author. MR 1466966, DOI 10.1007/978-3-642-59141-9
- Stephen S. Shatz, Profinite groups, arithmetic, and geometry, Annals of Mathematics Studies, No. 67, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0347778
- Peter Symonds and Thomas Weigel, Cohomology of $p$-adic analytic groups, New horizons in pro-$p$ groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 349–410. MR 1765127
Bibliographic Information
- Ethan S. Devinatz
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- Email: devinatz@math.washington.edu
- Received by editor(s): September 13, 2002
- Received by editor(s) in revised form: May 21, 2003
- Published electronically: January 23, 2004
- Additional Notes: The author was partially supported by a grant from the National Science Foundation.
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 129-150
- MSC (2000): Primary 55N20; Secondary 55P43, 55T15
- DOI: https://doi.org/10.1090/S0002-9947-04-03394-X
- MathSciNet review: 2098089