On structurally stable diffeomorphisms with codimension one expanding attractors
HTML articles powered by AMS MathViewer
- by V. Grines and E. Zhuzhoma
- Trans. Amer. Math. Soc. 357 (2005), 617-667
- DOI: https://doi.org/10.1090/S0002-9947-04-03460-9
- Published electronically: April 16, 2004
- PDF | Request permission
Abstract:
We show that if a closed $n$-manifold $M^n$ $(n\ge 3)$ admits a structurally stable diffeomorphism $f$ with an orientable expanding attractor $\Omega$ of codimension one, then $M^n$ is homotopy equivalent to the $n$-torus $T^n$ and is homeomorphic to $T^n$ for $n\ne 4$. Moreover, there are no nontrivial basic sets of $f$ different from $\Omega$. This allows us to classify, up to conjugacy, structurally stable diffeomorphisms having codimension one orientable expanding attractors and contracting repellers on $T^n$, $n\ge 3$.References
- D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
- Trudy V mezhdunarodnoĭ konferentsii po nelineĭnym kolebaniyam (Kiev, 1969 g.). Tom 2: Kachestvennye metody teorii nelineĭnykh kolebaniĭ, Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1970 (Russian). Edited by Ju. A. Mitropol′skiĭ and A. N. Šarkovskiĭ. MR 0320430
- S. Kh. Aranson, G. R. Belitsky, and E. V. Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Translations of Mathematical Monographs, vol. 153, American Mathematical Society, Providence, RI, 1996. Translated from the Russian manuscript by H. H. McFaden. MR 1400885, DOI 10.1090/mmono/153
- S. Kh. Aranson and V. Z. Grines, Topological classification of cascades on closed two-dimensional manifolds, Uspekhi Mat. Nauk 45 (1990), no. 1(271), 3–32, 222 (Russian); English transl., Russian Math. Surveys 45 (1990), no. 1, 1–35. MR 1050926, DOI 10.1070/RM1990v045n01ABEH002322
- S. Kh. Aranson, R. V. Plykin, A. Yu. Zhirov, and E. V. Zhuzhoma, Exact upper bounds for the number of one-dimensional basic sets of surface $A$-diffeomorphisms, J. Dynam. Control Systems 3 (1997), no. 1, 1–18. MR 1436547, DOI 10.1007/BF02471759
- S. Kh. Aranson and E. V. Zhuzhoma, On the structure of quasiminimal sets of foliations on surfaces, Mat. Sb. 185 (1994), no. 8, 31–62 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 82 (1995), no. 2, 397–424. MR 1302622, DOI 10.1070/SM1995v082n02ABEH003572
- C. Bonatti and R. Langevin, Difféomorphismes de Smale des surfaces, Astérisque 250 (1998), viii+235 (French, with English and French summaries). With the collaboration of E. Jeandenans. MR 1650926
- Rufus Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377–397. MR 282372, DOI 10.1090/S0002-9947-1971-0282372-0
- Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113–115. MR 117694, DOI 10.1090/S0002-9904-1960-10420-X
- Morton Brown and Herman Gluck, Stable structures on manifolds. I. Homeomorphisms of $S^{n}$, Ann. of Math. (2) 79 (1964), 1–17. MR 158383, DOI 10.2307/1970481
- F. T. Farrell and L. E. Jones, New attractors in hyperbolic dynamics, J. Differential Geometry 15 (1980), no. 1, 107–133 (1981). MR 602444, DOI 10.4310/jdg/1214435388
- John Franks, Anosov diffeomorphisms, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 61–93. MR 0271990
- John Franks and Clark Robinson, A quasi-Anosov diffeomorphism that is not Anosov, Trans. Amer. Math. Soc. 223 (1976), 267–278. MR 423420, DOI 10.1090/S0002-9947-1976-0423420-9
- V. Z. Grines, The topological equivalence of one-dimensional basic sets of diffeomorphisms on two-dimensional manifolds, Uspehi Mat. Nauk 29 (1974), no. 6(180), 163–164 (Russian). MR 0440624
- V. Z. Grines, The topological conjugacy of diffeomorphisms of a two-dimensional manifold on one-dimensional orientable basic sets. I, Trudy Moskov. Mat. Obšč. 32 (1975), 35–60 (Russian). MR 0418161
- V. Z. Grines, The topological conjugacy of diffeomorphisms of a two-dimensional manifold on one-dimensional orientable basic sets. II, Trudy Moskov. Mat. Obšč. 34 (1977), 243–252 (Russian). MR 0474417
- V. Z. Grines, Structural stability and asymptotic behavior of invariant manifolds of $A$-diffeomorphisms of surfaces, J. Dynam. Control Systems 3 (1997), no. 1, 91–110. MR 1436551, DOI 10.1007/BF02471763
- V. Z. Grines, On the topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers, Mat. Sb. 188 (1997), no. 4, 57–94 (Russian, with Russian summary); English transl., Sb. Math. 188 (1997), no. 4, 537–569. MR 1462029, DOI 10.1070/SM1997v188n04ABEH000216
- V. Z. Grines and E. V. Žužoma, Topological classification of orientable attractors on an $n$-dimensional torus, Uspekhi Mat. Nauk 34 (1979), no. 4(208), 185–186 (Russian). MR 548425
- V. Z. Grines and E. V. Zhuzhoma, Necessary and sufficient conditions for topological equivalence of orientable attractors on an $n$-dimensional torus, Differential and integral equations, No. 5, Gor′kov. Gos. Univ., Gorki, 1981, pp. 89–93 (Russian). MR 708129
- V. Grines, E. Zhuzhoma. Structuraly stable diffeomorphisms with codimension one basic sets. Preprint. Universite de Bourgogne, Laboratoire de Topologie, Dijon Cedex, 2000, no 223.
- John Guckenheimer, Endomorphisms of the Riemann sphere, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 95–123. MR 0274740
- André Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 16 (1962), 367–397 (French). MR 189060
- John Hempel, $3$-Manifolds, Annals of Mathematics Studies, No. 86, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. MR 0415619
- Koichi Hiraide, A simple proof of the Franks-Newhouse theorem on codimension-one Anosov diffeomorphisms, Ergodic Theory Dynam. Systems 21 (2001), no. 3, 801–806. MR 1836432, DOI 10.1017/S0143385701001390
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362, DOI 10.1007/978-1-4684-9449-5
- Morris W. Hirsch and Charles C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 133–163. MR 0271991
- M. Hirsch, J. Palis, C. Pugh, and M. Shub, Neighborhoods of hyperbolic sets, Invent. Math. 9 (1969/70), 121–134. MR 262627, DOI 10.1007/BF01404552
- W.-c. Hsiang and C. T. C. Wall, On homotopy tori. II, Bull. London Math. Soc. 1 (1969), 341–342. MR 258044, DOI 10.1112/blms/1.3.341
- Lowell Jones, Locally strange hyperbolic sets, Trans. Amer. Math. Soc. 275 (1983), no. 1, 153–162. MR 678341, DOI 10.1090/S0002-9947-1983-0678341-7
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- Heinrich Kollmer, On hyperbolic attractors of codimension one, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Lecture Notes in Math., Vol. 597, Springer, Berlin, 1977, pp. 330–334. MR 0467836
- H. Blaine Lawson Jr., Foliations, Bull. Amer. Math. Soc. 80 (1974), 369–418. MR 343289, DOI 10.1090/S0002-9904-1974-13432-4
- W. Magnus, A. Karrass, D. Solitar. Combinatorial Group Theory: Presentations of groups in terms of generators and relations. Interscience Publishers, 1966.
- Ricardo Mañé, A proof of the $C^1$ stability conjecture, Inst. Hautes Études Sci. Publ. Math. 66 (1988), 161–210. MR 932138
- Barry Mazur, On embeddings of spheres, Bull. Amer. Math. Soc. 65 (1959), 59–65. MR 117693, DOI 10.1090/S0002-9904-1959-10274-3
- S. E. Newhouse, On codimension one Anosov diffeomorphisms, Amer. J. Math. 92 (1970), 761–770. MR 277004, DOI 10.2307/2373372
- Zbigniew Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, The M.I.T. Press, Cambridge, Mass.-London, 1971. MR 0649788
- S. P. Novikov. Topology of foliations. Trans. Moscow Math. Soc. 14 (1965), 268-304 (1967).
- J. Palis, On Morse-Smale dynamical systems, Topology 8 (1968), 385–404. MR 246316, DOI 10.1016/0040-9383(69)90024-X
- Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR 669541, DOI 10.1007/978-1-4612-5703-5
- J. F. Plante, The homology class of an expanded invariant manifold, Dynamical systems—Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Lecture Notes in Math., Vol. 468, Springer, Berlin, 1975, pp. 251–256. MR 0650666
- R. V. Plykin, The topology of basic sets of Smale diffeomorphisms, Mat. Sb. (N.S.) 84 (126) (1971), 301–312 (Russian). MR 0286134
- R. V. Plykin. Sources and sinks of A-diffeomorphisms of surfaces. Math. USSR—Sbornik 23(1974), 223-253.
- R. V. Plykin, The geometry of hyperbolic attractors of smooth cascades, Uspekhi Mat. Nauk 39 (1984), no. 6(240), 75–113 (Russian). MR 771099
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Clark Robinson, Structural stability of $C^{1}$ diffeomorphisms, J. Differential Equations 22 (1976), no. 1, 28–73. MR 474411, DOI 10.1016/0022-0396(76)90004-8
- Clark Robinson, Dynamical systems, 2nd ed., Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1999. Stability, symbolic dynamics, and chaos. MR 1792240
- R. Clark Robinson and R. F. Williams, Finite stability is not generic, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 451–462. MR 0331430
- Clark Robinson and Robert Williams, Classification of expanding attractors: an example, Topology 15 (1976), no. 4, 321–323. MR 415682, DOI 10.1016/0040-9383(76)90024-0
- Harold Rosenberg, Foliations by planes, Topology 7 (1968), 131–138. MR 228011, DOI 10.1016/0040-9383(68)90021-9
- T. Benny Rushing, Topological embeddings, Pure and Applied Mathematics, Vol. 52, Academic Press, New York-London, 1973. MR 0348752
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- John Stallings, On fibering certain $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95–100. MR 0158375
- Dennis Sullivan and R. F. Williams, On the homology of attractors, Topology 15 (1976), no. 3, 259–262. MR 413185, DOI 10.1016/0040-9383(76)90041-0
- Itiro Tamura, Y\B{o}s\B{o} no toporojī, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 80, Iwanami Shoten, Tokyo, 1976 (Japanese). MR 669379
- R. F. Williams, One-dimensional non-wandering sets, Topology 6 (1967), 473–487. MR 217808, DOI 10.1016/0040-9383(67)90005-5
- R. F. Williams, The $“\textrm {DA}''$ maps of Smale and structural stability, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 329–334. MR 0264705
- R. F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 169–203. MR 348794, DOI 10.1007/BF02684369
- A. Yu. Zhirov, Enumeration of hyperbolic attractors on orientable surfaces, and applications to pseudo-Anosov homeomorphisms, Dokl. Akad. Nauk 330 (1993), no. 6, 683–686 (Russian); English transl., Russian Acad. Sci. Dokl. Math. 47 (1993), no. 3, 593–598. MR 1242164
- A. Yu. Zhirov, Complete combinatorial invariants for conjugacy of hyperbolic attractors of diffeomorphisms of surfaces, J. Dynam. Control Systems 6 (2000), no. 3, 397–430. MR 1763676, DOI 10.1023/A:1009518807108
- E. V. Zhuzhoma, Orientable basic sets of codimension $1$, Izv. Vyssh. Uchebn. Zaved. Mat. 5 (1982), 16–21 (Russian). MR 661841
Bibliographic Information
- V. Grines
- Affiliation: Department of Mathematics, Agriculture Academy of Nizhny Novgorod, 97 Gagarin Ave, Nizhny Novgorod, 603107 Russia
- MR Author ID: 193726
- E. Zhuzhoma
- Affiliation: Department of Applied Mathematics, Nizhny Novgorod State Technical University, 24 Minina Str., Nizhny Novgorod, 603600 Russia
- Email: zhuzhoma@mail.ru
- Received by editor(s): March 15, 2001
- Received by editor(s) in revised form: April 10, 2003, and July 10, 2003
- Published electronically: April 16, 2004
- Additional Notes: This research was partially supported by the RFFI grant 02-01-00098
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 617-667
- MSC (2000): Primary 37D20; Secondary 37C70, 37C15
- DOI: https://doi.org/10.1090/S0002-9947-04-03460-9
- MathSciNet review: 2095625