The relationship between homological properties and representation theoretic realization of artin algebras
HTML articles powered by AMS MathViewer
- by Osamu Iyama
- Trans. Amer. Math. Soc. 357 (2005), 709-734
- DOI: https://doi.org/10.1090/S0002-9947-04-03482-8
- Published electronically: July 16, 2004
- PDF | Request permission
Abstract:
We will study the relationship of quite different objects in the theory of artin algebras, namely Auslander-regular rings of global dimension two, torsion theories, $\tau$-categories and almost abelian categories. We will apply our results to characterization problems of Auslander-Reiten quivers.References
- Maurice Auslander, Representation theory of Artin algebras. I, II, Comm. Algebra 1 (1974), 177–268; ibid. 1 (1974), 269–310. MR 349747, DOI 10.1080/00927877408548230
- Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR 0269685
- Maurice Auslander and Idun Reiten, Representation theory of Artin algebras. III. Almost split sequences, Comm. Algebra 3 (1975), 239–294. MR 379599, DOI 10.1080/00927877508822046
- Maurice Auslander and Idun Reiten, $k$-Gorenstein algebras and syzygy modules, J. Pure Appl. Algebra 92 (1994), no. 1, 1–27. MR 1259667, DOI 10.1016/0022-4049(94)90044-2
- Maurice Auslander and Idun Reiten, Syzygy modules for Noetherian rings, J. Algebra 183 (1996), no. 1, 167–185. MR 1397392, DOI 10.1006/jabr.1996.0212
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422, DOI 10.1017/CBO9780511623608
- M. Auslander and Sverre O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), no. 2, 426–454. MR 617088, DOI 10.1016/0021-8693(81)90214-3
- Ibrahim Assem, Tilting theory—an introduction, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 127–180. MR 1171230
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- Jan-Erik Björk, The Auslander condition on Noetherian rings, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988) Lecture Notes in Math., vol. 1404, Springer, Berlin, 1989, pp. 137–173. MR 1035224, DOI 10.1007/BFb0084075
- K. Bongartz and P. Gabriel, Covering spaces in representation-theory, Invent. Math. 65 (1981/82), no. 3, 331–378. MR 643558, DOI 10.1007/BF01396624
- Sheila Brenner, A combinatorial characterisation of finite Auslander-Reiten quivers, Representation theory, I (Ottawa, Ont., 1984) Lecture Notes in Math., vol. 1177, Springer, Berlin, 1986, pp. 13–49. MR 842457, DOI 10.1007/BFb0075256
- John Clark, Auslander-Gorenstein rings for beginners, International Symposium on Ring Theory (Kyongju, 1999) Trends Math., Birkhäuser Boston, Boston, MA, 2001, pp. 95–115. MR 1851195
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. With applications to finite groups and orders; Reprint of the 1981 original; A Wiley-Interscience Publication. MR 1038525
- Ju. A. Drozd and V. V. Kiričenko, The quasi-Bass orders, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 328–370 (Russian). MR 0304411
- Ju. A. Drozd, V. V. Kiričenko, and A. V. Roĭter, Hereditary and Bass orders, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 1415–1436 (Russian). MR 0219527
- Robert M. Fossum, Phillip A. Griffith, and Idun Reiten, Trivial extensions of abelian categories, Lecture Notes in Mathematics, Vol. 456, Springer-Verlag, Berlin-New York, 1975. Homological algebra of trivial extensions of abelian categories with applications to ring theory. MR 0389981, DOI 10.1007/BFb0065404
- Edward L. Green and Roberto Martínez Villa, Koszul and Yoneda algebras, Representation theory of algebras (Cocoyoc, 1994) CMS Conf. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 1996, pp. 247–297. MR 1388055
- Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124, DOI 10.1017/CBO9780511629228
- Mitsuo Hoshino, Tilting modules and torsion theories, Bull. London Math. Soc. 14 (1982), no. 4, 334–336. MR 663483, DOI 10.1112/blms/14.4.334
- Mitsuo Hoshino, On dominant dimension of Noetherian rings, Osaka J. Math. 26 (1989), no. 2, 275–280. MR 1017586
- Dieter Happel, Udo Preiser, and Claus Michael Ringel, Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to $D\textrm {Tr}$-periodic modules, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 280–294. MR 607159
- H. Hijikata and K. Nishida, Bass orders in nonsemisimple algebras, J. Math. Kyoto Univ. 34 (1994), no. 4, 797–837. MR 1311621, DOI 10.1215/kjm/1250518887
- Osamu Iyama, A generalization of rejection lemma of Drozd-Kirichenko, J. Math. Soc. Japan 50 (1998), no. 3, 697–718. MR 1625391, DOI 10.2969/jmsj/05030697
- Osamu Iyama, Some categories of lattices associated to a central idempotent, J. Math. Kyoto Univ. 38 (1998), no. 3, 487–501. MR 1661224, DOI 10.1215/kjm/1250518062
- O. Iyama: $\tau$-categories I: Ladders, to appear in Algebras and Representation Theory.
- O. Iyama: $\tau$-categories II: Nakayama pairs and rejective subcategories, to appear in Algebras and Representation Theory.
- O. Iyama: $\tau$-categories III: Auslander orders and Auslander-Reiten quivers, to appear in Algebras and Representation Theory.
- Osamu Iyama, Representation theory of orders, Algebra—representation theory (Constanta, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 28, Kluwer Acad. Publ., Dordrecht, 2001, pp. 63–96. MR 1858032
- Osamu Iyama, A proof of Solomon’s second conjecture on local zeta functions of orders, J. Algebra 259 (2003), no. 1, 119–126. MR 1953711, DOI 10.1016/S0021-8693(02)00548-3
- Osamu Iyama, Finiteness of representation dimension, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1011–1014. MR 1948089, DOI 10.1090/S0002-9939-02-06616-9
- O. Iyama: Symmetry and Duality on $n$-Gorenstein rings, J. Algebra 269 (2003), no. 2, 528–535.
- Kiyoshi Igusa and Gordana Todorov, Radical layers of representable functors, J. Algebra 89 (1984), no. 1, 105–147. MR 748231, DOI 10.1016/0021-8693(84)90238-2
- Kiyoshi Igusa and Gordana Todorov, Radical layers of representable functors, J. Algebra 89 (1984), no. 1, 105–147. MR 748231, DOI 10.1016/0021-8693(84)90238-2
- Kiyoshi Igusa and Gordana Todorov, A numerical characterization of finite Auslander-Reiten quivers, Representation theory, I (Ottawa, Ont., 1984) Lecture Notes in Math., vol. 1177, Springer, Berlin, 1986, pp. 181–198. MR 842466, DOI 10.1007/BFb0075265
- Klaus W. Roggenkamp and Verena Huber-Dyson, Lattices over orders. I, Lecture Notes in Mathematics, Vol. 115, Springer-Verlag, Berlin-New York, 1970. MR 0283013
- Wolfgang Rump, Almost abelian categories, Cahiers Topologie Géom. Différentielle Catég. 42 (2001), no. 3, 163–225 (English, with French summary). MR 1856638
- Wolfgang Rump, $\ast$-modules, tilting, and almost abelian categories, Comm. Algebra 29 (2001), no. 8, 3293–3325. MR 1849488, DOI 10.1081/AGB-100105023
- Wolfgang Rump, Ladder functors with an application to representation-finite Artinian rings, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 9 (2001), no. 1, 107–123. To Mirela Ştefănescu, at her 60’s. MR 1946161
- W. Rump: Lattice-finite rings, to appear in Algebras and Representation Theory.
- W. Rump: The category of lattices over a lattice-finite ring, to appear in Algebras and Representation Theory.
- Idun Reiten and Michel Van den Bergh, Two-dimensional tame and maximal orders of finite representation type, Mem. Amer. Math. Soc. 80 (1989), no. 408, viii+72. MR 978602, DOI 10.1090/memo/0408
- Claus Michael Ringel and Dieter Vossieck, Hammocks, Proc. London Math. Soc. (3) 54 (1987), no. 2, 216–246. MR 872806, DOI 10.1112/plms/s3-54.2.216
- Daniel Simson, Linear representations of partially ordered sets and vector space categories, Algebra, Logic and Applications, vol. 4, Gordon and Breach Science Publishers, Montreux, 1992. MR 1241646
- Hiroyuki Tachikawa, Quasi-Frobenius rings and generalizations. $\textrm {QF}-3$ and $\textrm {QF}-1$ rings, Lecture Notes in Mathematics, Vol. 351, Springer-Verlag, Berlin-New York, 1973. Notes by Claus Michael Ringel. MR 0349740, DOI 10.1007/BFb0059997
Bibliographic Information
- Osamu Iyama
- Affiliation: Department of Mathematics, Himeji Institute of Technology, Himeji, 671-2201, Japan
- MR Author ID: 634748
- Email: iyama@sci.himeji-tech.ac.jp
- Received by editor(s): July 9, 2002
- Received by editor(s) in revised form: July 31, 2003
- Published electronically: July 16, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 709-734
- MSC (2000): Primary 16E65; Secondary 16G70
- DOI: https://doi.org/10.1090/S0002-9947-04-03482-8
- MathSciNet review: 2095628