## Finite time blow-up for a dyadic model of the Euler equations

HTML articles powered by AMS MathViewer

- by Nets Hawk Katz and Nataša Pavlović PDF
- Trans. Amer. Math. Soc.
**357**(2005), 695-708 Request permission

## Abstract:

We introduce a dyadic model for the Euler equations and the Navier-Stokes equations with hyper-dissipation in three dimensions. For the dyadic Euler equations we prove finite time blow-up. In the context of the dyadic Navier-Stokes equations with hyper-dissipation we prove finite time blow-up in the case when the dissipation degree is sufficiently small.## References

- J. T. Beale, T. Kato, and A. Majda,
*Remarks on the breakdown of smooth solutions for the $3$-D Euler equations*, Comm. Math. Phys.**94**(1984), no. 1, 61–66. MR**763762**, DOI 10.1007/BF01212349 - L. Caffarelli, R. Kohn, and L. Nirenberg,
*Partial regularity of suitable weak solutions of the Navier-Stokes equations*, Comm. Pure Appl. Math.**35**(1982), no. 6, 771–831. MR**673830**, DOI 10.1002/cpa.3160350604 - M. Cannone: Harmonic analysis tools for solving the incompressible Navier-Stokes equations, To appear in
*Handbook of Mathematical Fluid Dynamics*3 (2004). - C. Fefferman: Existence and smoothness of the Navier-Stokes equation,
*http://www.**claymath.org*, (2000). - S. Friedlander, and N. Pavlović: Blow up in a three-dimensional vector model for the Euler equations,
*Preprint*, (2003). - E. B. Gledzer: System of hydrodynamic type admitting two quadratic integrals of motion,
*Sov. Phys. Dokl.***18**, No. 4 (1973), 216–217. - Tosio Kato,
*Quasi-linear equations of evolution, with applications to partial differential equations*, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Math., Vol. 448, Springer, Berlin, 1975, pp. 25–70. MR**0407477** - N. H. Katz and N. Pavlović,
*A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation*, Geom. Funct. Anal.**12**(2002), no. 2, 355–379. MR**1911664**, DOI 10.1007/s00039-002-8250-z - F. Nazarov:
*Personal communication*, (2001). - Koji Ohkitani and Michio Yamada,
*Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully-developed model turbulence*, Progr. Theoret. Phys.**81**(1989), no. 2, 329–341. MR**997440**, DOI 10.1143/PTP.81.329 - R. Temam,
*Local existence of $C^{\infty }$ solutions of the Euler equations of incompressible perfect fluids*, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Lecture Notes in Math., Vol. 565, Springer, Berlin, 1976, pp. 184–194. MR**0467033**

## Additional Information

**Nets Hawk Katz**- Affiliation: Department of Mathematics, Washington University, St. Louis, Missouri 63130
- MR Author ID: 610432
- Email: nets@math.wustl.edu
**Nataša Pavlović**- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 697878
- Email: natasa@math.princeton.edu
- Received by editor(s): July 25, 2003
- Published electronically: March 12, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**357**(2005), 695-708 - MSC (2000): Primary 35Q30, 35Q35, 76B03
- DOI: https://doi.org/10.1090/S0002-9947-04-03532-9
- MathSciNet review: 2095627