Harnack inequalities for non-local operators of variable order
HTML articles powered by AMS MathViewer
- by Richard F. Bass and Moritz Kassmann
- Trans. Amer. Math. Soc. 357 (2005), 837-850
- DOI: https://doi.org/10.1090/S0002-9947-04-03549-4
- Published electronically: July 22, 2004
- PDF | Request permission
Abstract:
We consider harmonic functions with respect to the operator \[ \mathcal {L} u(x)=\int [u(x+h)-u(x)-1_{(|h|\leq 1)} h\cdot \nabla u(x)] n(x,h) dh. \] Under suitable conditions on $n(x,h)$ we establish a Harnack inequality for functions that are nonnegative and harmonic in a domain. The operator $\mathcal {L}$ is allowed to be anisotropic and of variable order.References
- R. F. Bass, Uniqueness in law for pure jump Markov processes, Probab. Theory Related Fields 79 (1988), no. 2, 271–287. MR 958291, DOI 10.1007/BF00320922
- Martin T. Barlow, Richard F. Bass, and Changfeng Gui, The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math. 53 (2000), no. 8, 1007–1038. MR 1755949, DOI 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.3.CO;2-L
- Jean Bertoin, Lévy processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. MR 1406564
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- Richard F. Bass and David A. Levin, Harnack inequalities for jump processes, Potential Anal. 17 (2002), no. 4, 375–388. MR 1918242, DOI 10.1023/A:1016378210944
- Richard F. Bass and David A. Levin, Transition probabilities for symmetric jump processes, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2933–2953. MR 1895210, DOI 10.1090/S0002-9947-02-02998-7
- Krzysztof Bogdan, Andrzej Stós, and PawełSztonyk, Harnack inequality for stable processes on $d$-sets, Studia Math. 158 (2003), no. 2, 163–198. MR 2013738, DOI 10.4064/sm158-2-5
- Krzysztof Bogdan, Andrzej Stós, and PawełSztonyk, Potential theory for Lévy stable processes, Bull. Polish Acad. Sci. Math. 50 (2002), no. 3, 361–372. MR 1948083
- Zhen-Qing Chen and Takashi Kumagai, Heat kernel estimates for stable-like processes on $d$-sets, Stochastic Process. Appl. 108 (2003), no. 1, 27–62. MR 2008600, DOI 10.1016/S0304-4149(03)00105-4
- E. B. Fabes and D. W. Stroock, A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash, Arch. Rational Mech. Anal. 96 (1986), no. 4, 327–338. MR 855753, DOI 10.1007/BF00251802
- Walter Hoh, Pseudodifferential operators with negative definite symbols and the martingale problem, Stochastics Stochastics Rep. 55 (1995), no. 3-4, 225–252. MR 1378858, DOI 10.1080/17442509508834027
- Moritz Kassmann, On regularity for Beurling-Deny type Dirichlet forms, Potential Anal. 19 (2003), no. 1, 69–87. MR 1962952, DOI 10.1023/A:1022486631020
- Takashi Komatsu, On the martingale problem for generators of stable processes with perturbations, Osaka J. Math. 21 (1984), no. 1, 113–132. MR 736974
- N. V. Krylov and M. V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR 245 (1979), no. 1, 18–20 (Russian). MR 525227
- N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 161–175, 239 (Russian). MR 563790
- Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. MR 159138, DOI 10.1002/cpa.3160140329
- A. V. Skorohod, Issledovaniya po teorii sluchaĭ nykh protsessov (Stokhasticheskie differentsial′nye uravneniya i predel′nye teoremy dlya protsessov Markova), Izdat. Kiev. Univ., Kiev, 1961 (Russian). MR 0185619
- R. Song and Z. Vondracek. Harnack inequality for some classes of Markov processes. Math. Z. 246(1-2):177–202, 2004.
- Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
Bibliographic Information
- Richard F. Bass
- Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
- Email: bass@math.uconn.edu
- Moritz Kassmann
- Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009 – and Institut für Angewandte Mathematik, Universität Bonn, Beringstrasse 6, D-53115 Bonn, Germany
- Email: kassmann@math.uconn.edu
- Received by editor(s): May 27, 2003
- Received by editor(s) in revised form: October 27, 2003
- Published electronically: July 22, 2004
- Additional Notes: The first author’s research was partially supported by NSF grant DMS-9988496
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 837-850
- MSC (2000): Primary 45K05; Secondary 60H10
- DOI: https://doi.org/10.1090/S0002-9947-04-03549-4
- MathSciNet review: 2095633