The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathéodory metrics
HTML articles powered by AMS MathViewer
- by Thomas Bieske and Luca Capogna
- Trans. Amer. Math. Soc. 357 (2005), 795-823
- DOI: https://doi.org/10.1090/S0002-9947-04-03601-3
- Published electronically: September 23, 2004
- PDF | Request permission
Abstract:
We derive the Euler-Lagrange equation (also known in this setting as the Aronsson-Euler equation) for absolute minimizers of the $L^{\infty }$ variational problem \[ \begin {cases} \inf ||\nabla _0 u||_{L^{\infty }(\Omega )}, u=g\in Lip(\partial \Omega ) \text { on }\partial \Omega , \end {cases} \] where $\Omega \subset \mathbf {G}$ is an open subset of a Carnot group, $\nabla _0 u$ denotes the horizontal gradient of $u:\Omega \to \mathbb {R}$, and the Lipschitz class is defined in relation to the Carnot-Carathéodory metric. In particular, we show that absolute minimizers are infinite harmonic in the viscosity sense. As a corollary we obtain the uniqueness of absolute minimizers in a large class of groups. This result extends previous work of Jensen and of Crandall, Evans and Gariepy. We also derive the Aronsson-Euler equation for more “regular" absolutely minimizing Lipschitz extensions corresponding to those Carnot-Carathéodory metrics which are associated to “free" systems of vector fields.References
- Gunnar Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551–561 (1967). MR 217665, DOI 10.1007/BF02591928
- Gunnar Aronsson, On the partial differential equation $u_{x}{}^{2}\!u_{xx} +2u_{x}u_{y}u_{xy}+u_{y}{}^{2}\!u_{yy}=0$, Ark. Mat. 7 (1968), 395–425 (1968). MR 237962, DOI 10.1007/BF02590989
- E. N. Barron, R. R. Jensen, and C. Y. Wang, The Euler equation and absolute minimizers of $L^\infty$ functionals, Arch. Ration. Mech. Anal. 157 (2001), no. 4, 255–283. MR 1831173, DOI 10.1007/PL00004239
- André Bellaïche, The tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 1–78. MR 1421822, DOI 10.1007/978-3-0348-9210-0_{1}
- Thomas Bieske, On $\infty$-harmonic functions on the Heisenberg group, Comm. Partial Differential Equations 27 (2002), no. 3-4, 727–761. MR 1900561, DOI 10.1081/PDE-120002872
- Thomas Bieske, Viscosity solutions on Grushin-type planes, Illinois J. Math. 46 (2002), no. 3, 893–911. MR 1951247
- T. Bieske, Lipschitz extensions on generalized Grushin-type spaces., preprint available at www.math.lsa.umich.edu/˜tbieske.
- L. Capogna, D. Danielli, and N. Garofalo, Subelliptic mollifiers and a characterization of Rellich and Poincaré domains, Rend. Sem. Mat. Univ. Politec. Torino 51 (1993), no. 4, 361–386 (1994). Partial differential equations, I (Turin, 1993). MR 1289895
- J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. MR 1708448, DOI 10.1007/s000390050094
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Michael G. Crandall, An efficient derivation of the Aronsson equation, Arch. Ration. Mech. Anal. 167 (2003), no. 4, 271–279. MR 1981858, DOI 10.1007/s00205-002-0236-3
- M. G. Crandall, L. C. Evans, and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations 13 (2001), no. 2, 123–139. MR 1861094, DOI 10.1007/s005260000065
- Donatella Danielli, Nicola Garofalo, and Duy-Minh Nhieu, Notions of convexity in Carnot groups, Comm. Anal. Geom. 11 (2003), no. 2, 263–341. MR 2014879, DOI 10.4310/CAG.2003.v11.n2.a5
- Donatella Danielli, Nicola Garofalo, and Duy-Minh Nhieu, On the best possible character of the $L^Q$ norm in some a priori estimates for non-divergence form equations in Carnot groups, Proc. Amer. Math. Soc. 131 (2003), no. 11, 3487–3498. MR 1991760, DOI 10.1090/S0002-9939-03-07105-3
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845, DOI 10.1090/gsm/019
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 657581
- Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano, Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math. 22 (1996), no. 4, 859–890. MR 1437714
- N. Garofalo, Analysis and Geometry of Carnot-Carathéodory Spaces, With applications to PDE’s, Birkhäuser, book in preparation.
- Nicola Garofalo and Duy-Minh Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), no. 10, 1081–1144. MR 1404326, DOI 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
- Nicola Garofalo and Duy-Minh Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math. 74 (1998), 67–97. MR 1631642, DOI 10.1007/BF02819446
- Mikhael Gromov, Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79–323. MR 1421823
- Piotr Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), no. 4, 403–415. MR 1401074, DOI 10.1007/BF00275475
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- Robert Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal. 123 (1993), no. 1, 51–74. MR 1218686, DOI 10.1007/BF00386368
- Fritz John, Partial differential equations, 4th ed., Applied Mathematical Sciences, vol. 1, Springer-Verlag, New York, 1991. MR 1185075
- Petri Juutinen, Absolutely minimizing Lipschitz extensions on a metric space, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 1, 57–67. MR 1884349
- G. Lu, J. Manfredi and B. Stroffolini, Convex functions on the Heisenberg group, to appear in Calc. Var. PDE.
- John Mitchell, On Carnot-Carathéodory metrics, J. Differential Geom. 21 (1985), no. 1, 35–45. MR 806700
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147. MR 793239, DOI 10.1007/BF02392539
- Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 436223, DOI 10.1007/BF02392419
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- C. Wang, The Euler equation of absolutely minimizing Lipschitz extensions for vector fields satisfying Hörmander’s condition, preprint (2003).
Bibliographic Information
- Thomas Bieske
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Address at time of publication: Department of Mathematics, University of South Florida, Tampa, Florida 33620
- Email: tbieske@umich.edu, tbieske@math.usf.edu
- Luca Capogna
- Affiliation: Department of Mathematics, University of Arkansas, Fayetteville, Arkansas 72701
- MR Author ID: 336615
- Email: lcapogna@uark.edu
- Received by editor(s): November 11, 2002
- Received by editor(s) in revised form: October 15, 2003
- Published electronically: September 23, 2004
- Additional Notes: The second author was partially supported by NSF CAREER grant No. DMS-0134318
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 795-823
- MSC (2000): Primary 35H20, 53C17
- DOI: https://doi.org/10.1090/S0002-9947-04-03601-3
- MathSciNet review: 2095631