Quantum cohomology of partial flag manifolds
HTML articles powered by AMS MathViewer
- by Anders Skovsted Buch
- Trans. Amer. Math. Soc. 357 (2005), 443-458
- DOI: https://doi.org/10.1090/S0002-9947-04-03655-4
- Published electronically: September 2, 2004
- PDF | Request permission
Abstract:
We give elementary geometric proofs of the structure theorems for the (small) quantum cohomology of partial flag varieties $\operatorname {SL}(n)/P$, including the quantum Pieri and quantum Giambelli formulas and the presentation.References
- Alexander Astashkevich and Vladimir Sadov, Quantum cohomology of partial flag manifolds $F_{n_1\cdots n_k}$, Comm. Math. Phys. 170 (1995), no. 3, 503–528. MR 1337131, DOI 10.1007/BF02099147
- Aaron Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), no. 2, 289–305. MR 1454400, DOI 10.1006/aima.1997.1627
- Anders Skovsted Buch, A direct proof of the quantum version of Monk’s formula, Proc. Amer. Math. Soc. 131 (2003), no. 7, 2037–2042. MR 1963747, DOI 10.1090/S0002-9939-03-06765-0
- Anders Skovsted Buch, Quantum cohomology of Grassmannians, Compositio Math. 137 (2003), no. 2, 227–235. MR 1985005, DOI 10.1023/A:1023908007545
- A. S. Buch, A. Kresch, H. Tamvakis, and A. Yong, Schubert polynomials and quiver formulas, Duke Math. J. 122 (2004), no. 1, 125–143.
- Ionuţ Ciocan-Fontanine, Quantum cohomology of flag varieties, Internat. Math. Res. Notices 6 (1995), 263–277. MR 1344348, DOI 10.1155/S1073792895000213
- Ionuţ Ciocan-Fontanine, On quantum cohomology rings of partial flag varieties, Duke Math. J. 98 (1999), no. 3, 485–524. MR 1695799, DOI 10.1215/S0012-7094-99-09815-0
- Sergey Fomin, Sergei Gelfand, and Alexander Postnikov, Quantum Schubert polynomials, J. Amer. Math. Soc. 10 (1997), no. 3, 565–596. MR 1431829, DOI 10.1090/S0894-0347-97-00237-3
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI 10.1090/pspum/062.2/1492534
- Alexander Givental and Bumsig Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), no. 3, 609–641. MR 1328256, DOI 10.1007/BF02101846
- Bumsig Kim, Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings, Internat. Math. Res. Notices 1 (1995), 1–15. MR 1317639, DOI 10.1155/S1073792895000018
- Bumsig Kim, On equivariant quantum cohomology, Internat. Math. Res. Notices 17 (1996), 841–851. MR 1420551, DOI 10.1155/S1073792896000517
- Bumsig Kim, Quantum cohomology of flag manifolds $G/B$ and quantum Toda lattices, Ann. of Math. (2) 149 (1999), no. 1, 129–148. MR 1680543, DOI 10.2307/121021
- B. Greene and S.-T. Yau (eds.), Mirror symmetry. II, AMS/IP Studies in Advanced Mathematics, vol. 1, American Mathematical Society, Providence, RI; International Press, Cambridge, MA, 1997. MR 1416331, DOI 10.1090/amsip/001
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450 (French, with English summary). MR 660739
- I. G. Macdonald, Notes on Schubert polynomials, Laboratoire de Combinatoire et d’Informatique Mathématique, Université du Québec à Montréal, 1991.
- Alexander Postnikov, On a quantum version of Pieri’s formula, Advances in geometry, Progr. Math., vol. 172, Birkhäuser Boston, Boston, MA, 1999, pp. 371–383. MR 1667687
- Yongbin Ruan and Gang Tian, A mathematical theory of quantum cohomology, Math. Res. Lett. 1 (1994), no. 2, 269–278. MR 1266766, DOI 10.4310/MRL.1994.v1.n2.a15
- Bernd Siebert and Gang Tian, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Asian J. Math. 1 (1997), no. 4, 679–695. MR 1621570, DOI 10.4310/AJM.1997.v1.n4.a2
- Frank Sottile, Pieri’s formula for flag manifolds and Schubert polynomials, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 89–110 (English, with English and French summaries). MR 1385512, DOI 10.5802/aif.1508
- Edward Witten, The Verlinde algebra and the cohomology of the Grassmannian, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 357–422. MR 1358625
Bibliographic Information
- Anders Skovsted Buch
- Affiliation: Matematisk Institut, Aarhus Universitet, Ny Munkegade, 8000 Århus C, Denmark
- MR Author ID: 607314
- Email: abuch@imf.au.dk
- Received by editor(s): March 12, 2003
- Published electronically: September 2, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 443-458
- MSC (2000): Primary 14N35; Secondary 14M15, 05E15
- DOI: https://doi.org/10.1090/S0002-9947-04-03655-4
- MathSciNet review: 2095617