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ON THE pe-TORSION OF ELLIPTIC CURVES
AND ELLIPTIC SURFACES IN CHARACTERISTIC p

ANDREAS SCHWEIZER

Abstract. We study the extension generated by the x-coordinates of the pe-
torsion points of an elliptic curve over a function field of characteristic p. If
S → C is a non-isotrivial elliptic surface in characteristic p with a pe-torsion
section, then for pe > 11 our results imply restrictions on the genus, the
gonality, and the p-rank of the base curve C, whereas for pe ≤ 11 such a
surface can be constructed over any base curve C. We also describe explicitly
all occurring pe in the cases where the surface S is rational or K3 or the base
curve C is rational, elliptic or hyperelliptic.

Introduction

Let F be a function field (of one variable) with constant field k.
In 1968 M. Levin [Le] showed that the torsion subgroup of any elliptic curve E

over F with j(E) �∈ k can be uniformly bounded in terms of the genus of F and the
characteristic of k. In 1996 [NgSa] refined Levin’s method and gave an even more
uniform bound in characteristic 0, namely in terms of the gonality of F . A similar
argument can be used in characteristic p to bound the prime-to-p torsion in terms
of p and the gonality of F .

For a different approach in terms of the genus see [HiSi, Theorem 7.2] in charac-
teristic 0 and [GoSz, Theorem 13] in the case where k is finite. The latter, however,
is not completely uniform since it involves the inseparability degree of j(E). Both
these references use the fact that if E has a place of additive reduction, then the
prime-to-char(k) torsion is bounded by 4, as follows from the description of the
bad fibers (see [Si2] or [Ta]). Thus in characteristic p in many cases the p-primary
torsion is the more interesting part.

Levin’s proof for the p-primary torsion uses an auxiliary function field, generated
over k(̃) by the x-coordinate of a pe-torsion point of an elliptic curve over k(̃) with
j-invariant ̃. This function field is intrinsic in the sense that it depends only on p
and e but not on the elliptic curve. It had been studied before in [Ig], where the
ramification is described and an explicit formula for its genus is given.

In Theorem 1.2 we show that the approach via this function field is actually
optimal. In fact, we use a slight modification, which we call Hpe . But the difference
is merely a matter of convenience and not essential. We derive good upper and lower
bounds for the gonality of Hpe and also estimate its p-rank (i.e., the p-rank of its
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1048 ANDREAS SCHWEIZER

Jacobian). This furnishes our first main application: The existence of an elliptic
curve E over F with an F -rational pe-torsion point and j(E) �∈ k implies lower
bounds (in terms of p and e) for the following invariants of F :

its genus g(F ),
its gonality γ(F ),
the quotient g(F )/γ(F ),
its p-rank r(F ),
the difference g(F ) − r(F ).

Or, put the other way round, the p-primary torsion of all E over F with j(E) �∈ k
can be uniformly bounded in terms of these invariants, for example by 24γ(F ). In
the cases where F is rational, elliptic, or hyperelliptic, we determine the optimal
bounds. See also [CoPa], where for rational F of characteristic different from 2 and
3 all possible prime-to-the-characteristic torsion structures are described.

If k is algebraically closed, our results can be reformulated in the language of non-
isotrivial elliptic surfaces S → C over k, giving relations between the p-primary part
of the Mordell-Weil group and invariants of the base curve C. We also determine
which pe-torsion sections are possible on rational elliptic surfaces and on elliptic
K3 surfaces.

1. Elliptic curves over function fields

If k is a field, we write k∗ for its multiplicative group and k for its algebraic
closure.

Let F be a function field (always of one variable) with constant field k of char-
acteristic p > 0. Besides its genus g(F ) there are two further invariants of F that
are of interest to us.

The (absolute) gonality of γ(F ) of F is the smallest possible index of a rational
subfield k(U) in kF . Equivalently, for a curve C over k the gonality γ(C) is the
smallest possible degree of a non-constant map (defined over k) from C to some P1

over k.
The p-rank of a smooth, projective curve C over a field k of characteristic p,

or equivalently, the p-rank of its function field F , is defined as the dimension of
the Fp-vector space formed by the p-torsion points (over k) of its Jacobian. This
dimension can take any value between 0 and g(C).

In this section we are interested in elliptic curves E over F with j(E) �∈ k. The
last condition guarantees, among other things, that E is ordinary. So the pe-torsion
points of E over F form a group isomorphic to Z/peZ.

We write E(pe) for the image of E under the e-th iteration of the Frobenius
isogeny. Since E(pe) is obtained by raising the coefficients in a Weierstraß equation
of E to the pe-th power, we have j(E(pe)) = (j(E))pe

. Conversely, if j(E) ∈ (F ∗)pe

,
then E ∼= Ẽ(pe) for some Ẽ over F .

By induction it suffices to prove this for e = 1. If p ≥ 5, then Y 2 = X3+a4X+a6

is isomorphic over F to Y 2 = X3 + ap2

4 X + a
3(p2−1)

2
4 a6 and from the formula for the

j-invariant we see that if j(E) is a p-th power, then a
3(p2−1)

2
4 a6 is also.

Analogous arguments work in characteristic 3, where E has a normal form Y 2 =
X3 + a2X

2 + a6 (see [Si1, Appendix A]) and in characteristic 2, where Y 2 + XY =
X3 + a2X

2 + 1
j(E) is isomorphic over F to Y 2 + XY = X3 + a2

2X
2 + 1

j(E) (see also
[Si1, Appendix A]).
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pe-TORSION OF ELLIPTIC CURVES 1049

In particular, if E has an F -rational pe-torsion point, then j(E) must be a pe-th
power in F , since the pe-torsion point generates an F -rational, cyclic pe-isogeny
whose dual isogeny is the e-th iteration of the Frobenius.

Another advantage of j(E) �∈ k is Aut(E) ∼= {±1}. Thus, if p is odd and E in
the form Y 2 = X3 + a2X

2 + a4X + a6, then every other elliptic curve over F with
the same j-invariant has an equation Y 2 = X3 + Da2X

2 + D2a4X + D3a6 with
D ∈ F ∗ (the so-called D-twist of E). On the points, the isomorphism (over F )
from E to this curve is given by (x, y) �→ (Dx, D

√
Dy).

If p = 2, every elliptic curve over F with the same j-invariant as Y 2 + XY =
X3 + a2X

2 + 1
j(E) is of the form Y 2 + XY = X3 + (a2 + α)X2 + 1

j(E) with α ∈ F ,
and the point (x, y) maps to (x, y + βx) with β2 + β = α.

To come to the point: First, the extension obtained by adjoining to F the x-
coordinate of one primitive pe-torsion point of E contains the x-coordinates of all
pe-torsion points of E, because for every n ∈ N the multiplication-by-n map on
E is given on the x-coordinates by a rational function over F . And secondly, the
extension does not really depend on E, only on j(E) and pe.

We define
Hpe := Fp(̃, (x(Pe))pe

),
where ̃ is transcendental over Fp and Pe is a primitive pe-torsion point of an elliptic
curve E over Fp(̃) with j(E) = ̃.

The fields Hpe will be the major tool throughout this paper. If k is algebraically
closed, then kHpe/k(̃) is the separable part of the extension investigated in [Ig].

On several occasions we will need the number hp of supersingular j-invariants in
Fp, which is given by

hp =

{
p−1
12 if p ≡ 1 mod 12,

	p+13
12 
 if p �≡ 1 mod 12.

Now we are ready to start with some fundamental facts on Hpe , which are almost
entirely due to [Ig].

Lemma 1.1. If pe ≥ 3, then Hpe/Fp(̃) is a geometric Galois extension of degree

[Hpe : Fp(̃)] =
pe−1(p − 1)

2
with

Gal(Hpe/Fp(̃)) ∼= (Z/peZ)∗/{±1}.
The genus gpe of Hpe is given by

2gpe − 2 =
1
24

(p − 1)(p2e−1 − 12pe−1 + 1) − hp − 3
8
δ2,p − 1

3
δ3,p,

where δi,p is 1 if i = p, and 0 otherwise.
For every supersingular invariant j0 ∈ Fp the place ̃ − j0 is totally ramified in

FpHpe/Fp(̃). If p ≡ 1 mod 4, then ̃−1728 has ramification index 2; if p ≡ 1 mod 3,
then ̃ has ramification index 3. All other places are unramified. The place 1

̃ is
totally decomposed in Hpe/Fp(̃).

Proof. We first prove the last statement.
Let E be an elliptic curve over Fp(̃) with j-invariant ̃ and split multiplicative

reduction at 1
̃ . Then E is a Tate curve over the local field K = Fp((1

̃ )), i.e.,
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1050 ANDREAS SCHWEIZER

there exists a Tate period t ∈ K∗ such that E(K) ∼= K
∗
/tZ. The pe-torsion point

Pe corresponds to the coset wtZ, where w is a pe-th root of t. Since the Tate
uniformization respects the action of Aut(K/K), we see that Pe, like w, is fixed by
all elements of Aut(K/K). Hence Pe is purely inseparable over K, which means
that Hpe is contained in K. (Thanks to Hershy Kisilevsky, from whom I learned
this argument a few years ago.)

The fact that 1
̃ is totally decomposed implies that Hpe/Fp(̃) is a geometric

extension and [kHpe : k(̃)] = [Hpe : Fp(̃)] for every constant field extension.
All other claims are proved in [Ig]. �

The following theorem is the key fact for almost all results in this paper.

Theorem 1.2. Let F be a function field with constant field k of characteristic p.
Then the necessary and sufficient condition for the existence of an elliptic curve E
over F with j(E) �∈ k and F -rational pe-torsion points is that F contains a function
field that is k-isomorphic to kHpe .

In particular, gpe is the minimal genus of such a function field. Moreover, if
g(F ) = gpe ≥ 2, then F must be k-isomorphic to kHpe .

Proof. If we take ̃ = j(E), then E is isomorphic over F to an elliptic curve defined
over Fp(̃). Hence the condition is clearly necessary. To prove that it is sufficient
we assume that F contains kHpe/k(̃) and consider an elliptic curve E over F with
j-invariant ̃pe

.
If p is odd we can assume E in the form Y 2 = X3+a2X

2+a4X +a6. Let (x0, y0)
be a pe-torsion point. Then x0 and y2

0 are in F . If y0 �∈ F , we simply replace E
by the twisted curve Y 2 = X3 + y2

0a2X
2 + y4

0a4X + y6
0a6 which has (y2

0x0, y
4
0) as a

pe-torsion point.
In characteristic 2 we can bring E into normal form Y 2 +XY = X3 +a2X

2+ 1
̃2e

with a2 ∈ F (see [Si1, Appendix A]). Then (0, 1

̃2e−1 ) is the 2-torsion point. If e > 1

we concentrate on the curve with a2 = 0, which has (̃−2e−2
, ̃−2e−1

) as a 4-torsion
point. The x-coordinate of every 2e-torsion point P is contained in F . If the y-
coordinate were not in F , some σ ∈ Aut(F/F ) would map P to its inverse. But
then σ would also map the underlying 4-torsion point to its inverse, a contradiction.

All other claims follow easily. �

The theorem shows that if one wants to bound the genus of F from below in
terms of pe, then the approach in [Le] is optimal. Actually, Levin uses it the other
way around to give a uniform bound on the p-primary torsion of E in terms of p
and g(F ). Before we derive a bound that is even more uniform we recall a result
by Voloch that is very useful for the explicit construction of elliptic curves with a
p-torsion point.

The Hasse invariant of an elliptic curve E : Y 2 = X3 + a2X
2 + a4X + a6

over a field K of odd characteristic p is the coefficient of Xp−1 in the polynomial
(X3 + a2X

2 + a4X + a6)
p−1
2 . It is 0 if and only if E is supersingular. For ordinary

curves the class of the Hasse invariant in K∗/(K∗)p−1 is an isomorphy invariant.
If the Hasse invariant of E lies in (K∗)p−1, then by [Vo, pp. 248/249] the p-torsion
points of the curve Y 2 = X3 + ap

2X
2 + ap

4X + ap
6 are K-rational.

Examples 1.3. a) The Hasse invariant of an ordinary elliptic curve Y 2 = X3 +
a4X + a6 over a field K of characteristic 11 is 9a4a6. So if we take for example
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pe-TORSION OF ELLIPTIC CURVES 1051

a4 = 5 and a6 = T 10, then by [Vo, pp. 248/249] the 11-torsion points of the curve
Y 2 = X3 + 5X + T 110 will be F11(T )-rational.

b) In characteristic 17 the Hasse invariant of Y 2 = X3+a4X +a6 is 2a4(a3
4−a2

6).
So if F is the function field F17(T, Z) with 2T 4 − 2TZ2 = 1, then the elliptic curve
Y 2 = X3 + TX + Z over F has Hasse invariant 1 by construction. Moreover, its
j-invariant 8T 4

T 4−4 is non-constant. By [Vo, pp. 248/249] the 17-torsion points of
Y 2 = X3 + T 17X + Z17 are F -rational. To obtain a good normal form for F we
change the coordinates to U = 4T , V = 2TZ.

From Theorem 1.2 we conclude that the genus 2 function field F17(U, V ) with
V 2 = U5 − 9U is isomorphic over F17 to H17.

Actually, the trick in the second example works in general.

Lemma 1.4. If p ≥ 17, then Hp is isomorphic to Fp(T, Z) with H(T, Z) = 1,
where H(T, Z) is the Hasse invariant of the elliptic curve Y 2 = X3 + TX + Z.

Proof. A little calculation shows that the terms of H(T, Z) are of the form
cm,nT mZn with m = p−1

4 − 3
2n and 0 ≤ n ≤ p−1

6 . So the total degree of the
polynomial H(T, Z)− 1 is at most p−1

4 .
If this polynomial were not irreducible in Fp[T, Z], then there would be a non-

constant, irreducible factor f(T, Z) of total degree d ≤ p−1
8 . Let L be the function

field Fp(T, Z) with f(T, Z) = 0. By the well-known formula for the genus of plane
curves we have g(L) ≤ (d−1)(d−2)

2 . On the other hand, by [Vo, pp. 248/249] the
p-torsion points of Y 2 = X3+T pX +Zp are L-rational, so L contains Hp and hence
gp ≤ g(L). Using the easy estimate 1

48 (p2 − 14p + 33) ≤ gp (misprint on page 460
of [Le]), we arrive at a contradiction.

Thus H(T, Z)−1 is irreducible in Fp[T, Z] and Fp(T, Z) is a function field which,
by [Vo, pp. 248/249], contains Hp. If the index [Fp(T, Z) : Hp] were bigger than 1,
we would have 2gp−1 ≤ g(Fp(T, Z)) ≤ (p−5)(p−9)

32 . This is only possible for p ≤ 17,
but the case p = 17 was already treated in Example 1.3b). �

We also see that in general the curve H(T, Z) = 1 is not smooth, since in general
gp is not of the form (d−1)(d−2)

2 .
Now we are ready to say more about the gonality of Hpe .

Lemma 1.5. a) Hpe is rational if and only if pe ≤ 11.
b) Hpe is elliptic if and only if pe = 13 or 16.
c) Hpe is hyperelliptic if and only if p = 17.
d) For p ≥ 7 the gonality of Hp is bounded by p+13

24 ≤ γ(Hp) ≤ p−1
6 .

e) If e > 1, then γ(Hpe) = pγ(Hpe−1) except for pe ∈ {25, 9, 8, 4}.

Proof. Statements a) and b) are due to [Le].
This also implies d) for p < 17. If p ≥ 17, then by the first two lines of the proof

of Lemma 1.4, Hp is an extension of degree at most p−1
6 of Fp(T ); this furnishes

the upper bound for γ(Hp).
In the sequel of the proof we will repeatedly exploit the following principle:

Let F , F1 and F2 be function fields (of one variable) over an algebraically closed
constant field k with Fi ⊆ F . If M is the compositum of F1 and F2 in F and
di = [M : Fi], then

g(M) ≤ d1g(F1) + d2g(F2) + (d1 − 1)(d2 − 1).
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1052 ANDREAS SCHWEIZER

In fact, let C, C1 and C2 be the curves corresponding to M , F1 and F2. Then
the maps πi : C → Ci factor over the induced map π1 × π2 : C → C1 × C2. The
function field of the image D of this map must be M , so π1 × π2 is birational onto
D, and we can apply the inequality of Castelnuovo-Severi ([NgSa, Lemma 1.4]).

To establish the lower bound in statement d), let R be a rational subfield of
FpHp with [FpHp : R] = γ = γ(Hp). Let M be the compositum of R and Fp(̃),
and put d1 = [M : R] and d2 = [M : Fp(̃)]. Then, as discussed above,

g(M) ≤ (d1 − 1)(d2 − 1).

On the other hand, by Lemma 1.1 and the Hurwitz formula,

g(M) ≥ 1 − d2 +
1
2
hp(d2 − 1) = (

hp

2
− 1)(d2 − 1).

Since γ ≤ p−1
6 , we can divide by (d2 − 1) ≥ 2 and obtain d1 ≥ hp

2 . If d1 < γ,
then γ ≥ 2d1 ≥ hp ≥ p−1

12 , which for p ≥ 17 is bigger than p+13
24 . If d1 = γ, then

M = FpHp and we have
1
48

(p − 3)(p − 11) ≤ g(Hp) ≤ (γ − 1)(
p − 1

2
− 1),

which also yields γ ≥ p+13
24 .

To prove e) let R be a rational subfield of FpHpe of index γ = γ(Hpe). If R is
contained in FpHpe−1 we are done. So let us suppose this is not the case. Then the
same argument as above yields

gpe ≤ p · gpe−1 + (p − 1)(γ − 1).

With the formula for the genus from Lemma 1.1 and some estimates we obtain

(p − 1)(p2e−2 − 1)
48

≤ γ.

If p ≥ 7 we compare this with

γ ≤ pe−1 p − 1
6

,

obtained from d). Similarly, if p = 2, 3, or 5, we use γ ≤ 2e−3, resp. γ ≤
3e−2 or γ ≤ 5e−1. Thus we see that the only values pe > 16 for which R is not
necessarily contained in FpHpe−1 are 49 and 25. Nevertheless, the attempt still
shows γ(H49) = 7. From the description of the ramification in H25/F5(̃) we see
that the intermediate field with index 2 in H25 has genus 2. This shows γ(H25) ≤ 4
and at the same time (since g25 = 6) that H25 cannot be hyperelliptic.

This brings us to statement c). Of course, the genus 2 function field H17 is
hyperelliptic. By d) and e) the only other possibilities are pe = 19, 23, 29, and 31.

From Lemma 1.1 we gather that the inertia field of the place ̃ in the extension
H31/F31(̃) has genus 2 and index 3 in H31. If H31 were hyperelliptic, we would get
g31 ≤ 3 · 2 + 2 · 1 = 8, but g31 = 12. Completely analogous arguments show that
H19 and H29 are not hyperelliptic.

By Lemma 1.4 we have H23
∼= F23(T, Z) with 10T 4Z + 9TZ3 − 1 = 0. This

polynomial is irreducible in F23(T )[Z] (Newton polygon for T ), so [H23 : F23(T )] =
3. Therefore H23 cannot be hyperelliptic because of g23 = 6. �

As an immediate consequence we obtain the following result (and its obvious
improvements for γ(F ) ≤ 2).
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pe-TORSION OF ELLIPTIC CURVES 1053

Theorem 1.6. Let F be a function field with constant field k of characteristic
p. Then the p-primary torsion of every elliptic curve E over F with j(E) �∈ k is
uniformly bounded by 24γ(F ).

Proof. If E has an F -rational pe-torsion point, then F contains kHpe . For p ≥ 7
this implies γ(F ) ≥ γ(Hpe) ≥ pe−1 p+13

24 . Similarly for p ∈ {2, 3, 5}. �

If there is an E/F with F -rational pe-torsion, then the upper bound on γ(Hp)
yields another restriction on F . Since every finite, purely inseparable extension of
a function field L (in one variable!) over a perfect constant field is isomorphic to L
itself by some power of the Frobenius map, we can suppose that kF is a separable
extension of kHpe , of degree d say. Then by the Hurwitz formula g(F ) − 1 ≥
d(gpe − 1), whereas for the gonality we trivially have γ(F ) ≤ dpe−1γ(Hp). Using
the formula for gpe and Lemma 1.5d) we can bound g(F )

γ(F ) from below by something

which is roughly of order pe

8 . Note that for most function fields the gonality is
about half of the genus.

We discuss yet another invariant of Hpe .

Lemma 1.7. The p-rank rpe of Hpe satisfies

rpe = pe−1(rp + hp − 1) + 1 − hp,

where hp is the number of supersingular j-invariants in Fp.
If p ∈ {2, 3, 5, 7}, then rpe = 0. If p ≥ 11 and e ≥ 2, then 0 < rpe < gpe .

Proof. Since Hpe+1 is a Galois extension of degree p of Hpe , ramified exactly at the
supersingular values of ̃, we have

rpe+1 − 1 = p(rpe − 1) + hp(p − 1)

by the well-known formula for the p-rank in such extensions. We refer to [Ro] for
an elementary proof in the situation where the constant field is finite, which clearly
suffices for our purposes. From this inductive formula the closed formula for rpe

follows immediately.
Then the vanishing of rpe for p ∈ {2, 3, 5, 7} is clear. For p ≥ 11 the positivity

of rpe for e ≥ 2 follows from hp ≥ 2 (for p �= 13) resp. from r13 = 1. (Compare the
proof of Proposition 2.7a) for the last claim.) Finally, the inequality rpe < gpe is
obtained by using rp ≤ gp and comparing with the formula for gpe . �

We suspect that the function fields Hp are ordinary, i.e., that rp = gp. In any
case, putting rp = gp in the formula provides a good upper bound for rpe , and it
is clear that for fixed p the genus of Hpe (roughly p2e

48 ) grows much faster than its
p-rank (more like pe+1

48 ). This is interesting because of the following criterion.
We write r(F ) for the p-rank of a function field F with constant field k of char-

acteristic p. The functoriality of the Jacobian implies that if there exists an elliptic
curve E over F with j(E) �∈ k and F -rational pe-torsion points, then necessarily

r(F ) ≥ rpe

and
g(F ) − r(F ) ≥ gpe − rpe .

Coming back to the Hasse invariant, the following lemma will allow us to prove the
converse to the statement in [Vo, pp. 248/249].
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1054 ANDREAS SCHWEIZER

Lemma 1.8. If char(k) = p ≥ 3, then kHp = k(̃, W ), where W
p−1
2 is the Hasse

invariant of any elliptic curve over k(̃) with j-invariant ̃.

Proof. If E : Y 2 = X3 + a2X
2 + a4X + a6 is such a curve and W

p−1
2 its Hasse

invariant, we consider its W -twist Ẽ : Y 2 = X3 + Wa2X
2 + W 2a4X + W 3a6 over

k(̃, W ). The Hasse invariant of Ẽ is W p−1, so by [Vo, pp. 248/249] the p-torsion
points of the curve Y 2 = X3 + W pap

2X
2 + W 2pap

4X + W 3pap
6 are k(̃, W )-rational.

In particular, k(̃, W ) contains kHp.
On the other hand p−1

2 = [kHp : k(̃)] ≤ [k(̃, W ) : k(̃)] ≤ p−1
2 . �

Proposition 1.9. If F is a function field with constant field k of characteristic
p ≥ 3 and E is an elliptic curve over F with j(E) �∈ k, then the p-torsion points
of E are F -rational if and only if j(E) lies in (F ∗)p and the Hasse invariant of E
lies in (F ∗)p(p−1).

Proof. At the beginning of this section we showed that if j(E) ∈ (F ∗)p, then E

is the image under Frobenius of an elliptic curve Ẽ over F . Clearly, if the Hasse
invariant of E lies in (F ∗)p(p−1), then the Hasse invariant of Ẽ lies in (F ∗)p−1, and
hence the p-torsion points of E are F -rational by [Vo, pp. 248/249].

Conversely, suppose the p-torsion points of E are F -rational. Then, as discussed
at the beginning of this section, j(E) is a p-th power in F ∗ and E ∼= Ẽ(p) for some
Ẽ over F .

Obviously, F must contain kHp. Since there exists a twist of Ẽ that is defined
over k(j(Ẽ)) and since twisting with D ∈ F ∗ changes the Hasse invariant by D

p−1
2 ,

we see from Lemma 1.8 that the Hasse invariant of Ẽ must be a p−1
2 -th power in

F . Thus the Hasse invariant of E is w
p(p−1)

2 for some w ∈ F ∗.
Now we consider the elliptic curve Ewp obtained from E by twisting with wp.

Its Hasse invariant is wp(p−1). Hence, by the first part of the proof, its p-torsion
points are F -rational. But these p-torsion points are of the form (wpx0, w

3p
2 y0),

where (x0, y0) are the p-torsion points of E, which are F -rational by assumption.
As y0 �= 0 (because p > 2), we see that

√
w ∈ F . So the Hasse invariant of E is in

(F ∗)p(p−1) (and Ewp is isomorphic to E already over F ). �

If j(E) ∈ k and k is algebraically closed, then an argument similar to the one
on the last few lines shows that the p-primary torsion of E over F is bounded by 2
unless E is isomorphic over F to an elliptic curve defined over k.

2. Elliptic surfaces with a p-torsion section

For the rest of the paper k is an algebraically closed field of characteristic p > 0.
We consider elliptic surfaces S → C, i.e., C is a smooth, projective curve over k
and S is a smooth, projective surface with a relatively minimal elliptic fibration
S → C which has a section C → S. We always suppose the elliptic surface to be
non-isotrivial, i.e., even after base change the elliptic fibration does not split.

If F is the function field of C over k, then the generic fiber of S → C is an elliptic
curve E over F , and the non-isotriviality condition is equivalent to j(E) �∈ k.

The group of sections C → S is isomorphic to the group of F -rational points
of E, called Mordell-Weil group in both settings. We write MWp(S/C) for the
p-primary part of the Mordell-Weil group. Then |MWp(S/C)| = pe for some e ≥ 0.
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The results of Section 1 can be reformulated in terms of elliptic surfaces. For
example, given C, the necessary and sufficient condition for the existence of a non-
isotrivial S → C with a pe-torsion section is that C is a cover of a curve whose
function field is isomorphic to kHpe . Moreover, |MWp(S/C)| is uniformly bounded
in terms of invariants of C; for example,

|MWp(S/C)| ≤ 24γ(C),

where γ denotes the gonality.
Now we are mainly interested in which values |MWp(S/C)| can take if we impose

conditions on the surface S.
If an elliptic surface S → C is a rational surface or a K3 surface, then the base

curve C must necessarily be rational because b1(S) = 0. More precisely, an elliptic
surface S → P1 is a rational surface if and only if c2(S) = 12, and S is a K3 surface
if and only if c2(S) = 24.

The second Chern number c2(S) can be calculated by

c2(S) = deg(conductor(S)) +
∑
ν∈P1

(nν − 1),

where nν is the number of irreducible components of the special fiber at ν. See
[Si2, Chapter IV] or [Ta] for the description of the special fibers.

Lemma 2.1. Let S → P1 be a non-isotrivial elliptic surface in characteristic 3
and suppose that it has a 9-torsion section. Then c2(S) ≥ 27. In particular, S is
neither rational nor a K3 surface.

Proof. By Lemma 1.1 the place 1
̃ decomposes into 3 different places in H9. This

implies that the j-invariant of S has at least 3 different poles. Moreover, j(S)
must be a 9-th power, so the order of each pole is divisible by 9. Hence, from the
contribution of the fibers of type In and I∗n we get c2(S) ≥ 27. �

For rational S the same reasoning also excludes the possibilities pe = 7, 8 or
11. Thus for non-isotrivial rational elliptic surfaces in characteristic p we have
|MWp(S/C)| ≤ 5. This can also be seen (even without the assumption of non-
isotriviality) from [OgSh, Corollary 2.1]. See also [Ke, p. 57], which provides more
information on the bad fibers.

Examples 2.2. The following examples, which all essentially go back to [La1] and
[La2], show that the remaining possible values for |MWp(S/C)| actually occur. The
base curve is always the projective line with coordinate T .

a) If an elliptic surface S → P1 in characteristic 5 has a 5-torsion section, then,
as in the proof of Lemma 2.1, its j-invariant must have at least two different poles,
each with an order divisible by 5. Thus, if c2(S) = 12, then the singular fibers of
S can only be of type II, I5, I5. By [La2] there is, up to isomorphism, exactly one
surface of this type. From [Ito1] we take the simple equation Y 2 = X3 + X + T 5

and that over F5(T ) the Mordell-Weil group is indeed Z/5Z.
b) Using the duplication formula ([Si1, p. 59]) it is not difficult to check that

(0, 0) is a 4-torsion point of the characteristic 2 curve Y 2 +TXY +TY = X3 +X2.
This is the surface III from [La2] with singular fibers of type III, I8.

This also indicates an error in the table of the Main Theorem in [OgSh]; in Case
70 the Mordell-Weil group should be Z/4Z.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1056 ANDREAS SCHWEIZER

c) By [Ito2] the characteristic 3 surface VII from [La2], given by the equation
Y 2 = X3+T 2X2+TX , has Mordell-Weil group Z/6Z and hence a 3-torsion section.

This surface has singular fibers of type III, I3, I6. Its existence contradicts the
statement on the last page of [Ke] that Case 66 in the table of the Main Theorem
in [OgSh] cannot occur in characteristic 2 or 3. Apparently, the error in the argu-
mentation in [Ke] is due to the somewhat misleading notation in [OgSh] (see pages
83 and 87) that makes singular fibers of type I2 or I3 appear as if they were of
type III or IV . Also note that in the table singular fibers of type I1 or II remain
hidden.

d) There are presumably many rational elliptic surfaces in characteristic 2 with
a 2-torsion section. We just mention the surface VIII from [La2] with equation
Y 2 + TXY + TY = X3 and singular fibers of type IV, I2, I6, because it shows that
Case 66 of [OgSh] also exists in characteristic 2. (Compare the comment in the last
example.)

e) In every characteristic p there are many non-isotrivial rational elliptic surfaces
without a p-torsion section. Any Beauville surface (see [La1]) will do, because it has
fibers In with p � |n. For example in odd characteristic we might take the Beauville
surface with singular fibers I8, I2, I1, I1, which again shows that in Case 70 in [OgSh]
the Mordell-Weil group should be Z/4Z.

We summarize:

Theorem 2.3. The order of the p-primary part of the Mordell-Weil group of a
non-isotrivial rational elliptic surface S → C in characteristic p is bounded by
|MWp(S/C)| ≤ 5, and each of the orders 1, 2, 3, 4, 5 can be realized by an extremal
rational elliptic surface.

Next we consider non-isotrivial elliptic K3 surfaces. The fact that in this case
p-torsion sections cannot exist for p > 11 was also obtained in [DoKe, Corollary
5.9] as a by-product of more general results on K3 surfaces. Actually, p = 11
cannot occur because then by the same argument as in Lemma 2.1 we would have
c2(S) ≥ 55. Thus we are left with |MWp(S/C)| ≤ 8.

Examples 2.4. a) In order to obtain a non-isotrivial elliptic K3 surface with
|MWp| = 1 one can proceed as follows.

We take a Beauville surface (see [La1]) and choose the parameter t of the base
curve P1 in such a way that there are no bad fibers at the places t = 0 and 1

t .
If p is odd, we base change the Beauville surface to an elliptic surface S over a

projective line C with parameter T where T 2 = t. Equivalently, in the equation
of the generic fiber over k(t) we replace t by T 2 and obtain an elliptic curve over
k(T ). Since the cover C → P1 is unramified outside t and 1

t , each bad fiber of the
Beauville surface will give two bad fibers of the same type on S. Hence S must be
a K3 surface, and since the fibers are still of type In with p � |n, it cannot have a
p-torsion section.

Similarly, in characteristic 2 we apply the base change T 2 + T = t which is
unramified outside 1

t .
b) We want to construct a non-isotrivial elliptic K3 surface in characteristic 2

with an 8-torsion section. By [Si1, Appendix A] there is a model Y 2 + XY =
X3 + a2X

2 + a6 with j = 1
a6

. If (x0, y0) is a 4-torsion point, then the duplication
formula [Si1, p. 59] shows a6 = x4

0. Hence a2 = ( y0
x0

+ x0)2 + ( y0
x0

+ x0) and we can
transform to Y 2 + XY = X3 + a6.
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If there is an 8-torsion point, then a6 = λ8 and as in the proof of Lemma 2.1 we
see that λ has exactly two zeroes, each of order 1. Again by the duplication formula
ζ4 + λ2ζ2 = λ8, where ζ is the x-coordinate of the 8-torsion point. Substituting
V = ζ2

λ2 +λ2 +λ, we obtain V (V +1) = λ, which shows that λ cannot have a simple
pole. We choose the parameter T of the base curve C so that the double pole of λ
is at ∞ and the zeroes are at T = 0 and T = 1. Thus λ = cT (T + 1) with c ∈ k∗.
The substitution V = W + dT with d2 = c yields W (W + 1) = (d2 + d)T , which is
only possible for d = 1 (since T has a simple pole).

It is straightforward to check that the elliptic surface

Y 2 + XY = X3 + T 8(T + 1)8

has conductor ∞3 · T (T + 1) and singular fibers I∗1 , I8, I8, is indeed a K3 surface,
and that (T 4 + T 3, T 8 + T 5) is an 8-torsion point.

By the argument above this surface is unique up to isomorphism.
c) By Proposition 1.9 an elliptic curve in characteristic 7 with a 7-torsion point

comes via Frobenius from an elliptic curve Ẽ : Y 2 = X3 + AX + B such that 3B

(the Hasse invariant of Ẽ) is a 6-th power. Thus B = 5β6 and Ẽ is isomorphic to
Y 2 = X3 + UX + 5, where U is a non-constant function in k(T ).

As in the proof of Lemma 2.1, the j-invariant of a non-isotrivial elliptic K3
surface in characteristic 7 with a 7-torsion section has exactly 3 poles, each of order
7. Together with j(Ẽ) = −U3

U3−1 this implies that U is a function of degree 1 in k(T ),
i.e. k(U) = k(T ). We conclude that

Y 2 = X3 + T 7X + 5,

which has conductor ∞2 · (T 3 − 1) and singular fibers III, I7, I7, I7, is (up to iso-
morphism) the only such surface.

d) By an analogous argument one sees that every non-isotrivial elliptic K3 sur-
face in characteristic 5 with a 5-torsion section is a quadratic base change of the
rational elliptic surface R : Y 2 = X3 + 3X + U5.

We leave it to the reader to work out all equations and their bad fibers (which
depend on how the two ramified places in k(T )/k(U) relate to the bad fibers of R).

e) By a quadratic base change of the charcteristic 3 surface in Example 2.2c) we
can, for instance, obtain the K3 surface Y 2 = X3 + T 4X2 + T 2X with conductor
∞ · T 2(T 2 − 1) and singular fibers I12, I

∗
0 , I3, I3.

Examples of elliptic K3 surfaces in characteristic 2 with |MW2(S/C)| = 2 or 4
are already in Table 1 of [Ito2].

Thus we have proved

Theorem 2.5. The p-primary part of the Mordell-Weil group of a non-isotrivial
elliptic K3 surface in characteristic p can only have order 1, 2, 3, 4, 5, 7 or 8, and
all these orders actually occur (for suitable p).

For general non-isotrivial elliptic surfaces S over a rational base curve we have
|MWp(S/P1)| ≤ 11, and the values 9 and 11 actually also occur (Theorem 1.2 in
connection with Lemma 1.5). We prove even more.

Theorem 2.6. Fix a curve C over an algebraically closed field k of characteristic
p. If e is a non-negative integer such that pe ≤ 11, then one can construct a
non-isotrivial elliptic surface S → C with |MWp(S/C)| = pe.
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Proof. There exists a covering C → P1 of finite degree. We can simply take a non-
isotrivial elliptic surface over this P1 with a pe-torsion section and then base-change
it to C. If the elliptic surface S0 → C we obtain has even a pe+1-torsion section, we
apply the separable p-isogeny, i.e., divide by the p-torsion section. The resulting
surface S1 → C will still have a pe-torsion section. And since j(S1) is a p-th root of
j(S0) we can continue until we reach an Sn → C which does not have a pe+1-torsion
section. �

In contrast, for pe > 11 there are conditions on the base curve C. For elliptic C
we have |MWp(S/C)| ≤ 16 and the conditions are the following.

Proposition 2.7. a) If k is an algebraically closed field of characteristic 13 and
C is an elliptic curve over k, then the necessary and sufficient condition for the
existence of a non-isotrivial elliptic surface S → C with a 13-torsion section is that
C has complex multiplication by an order in the cyclotomic field Q(

√
−3).

b) If C is an elliptic curve over an algebraically closed field of characteristic 2,
then there exists a non-isotrivial elliptic surface S → C with a 16-torsion section if
and only if C is supersingular.

Proof. a) In the extension H13/F13(̃) the supersingular place ̃ − 5 is totally ram-
ified. Hence Gal(H13/F13(̃)) fixes the place ℘ of H13 lying above ̃ − 5. Therefore
the curve C̃ of H13 over k with ℘ chosen as its origin is an elliptic curve with
an automorphism group of order 6. Consequently C̃ is ordinary and has complex
multiplication by Z[ 1+

√
−3

2 ].
Now the assertion follows from Theorem 1.2 and the fact that the elliptic curves

C over k that are isogenous to C̃ are exactly those with complex multiplication by
an order in Q(

√
−3).

The proof of b) is practically the same. �

For hyperelliptic C we have |MWp(S/C)| ≤ 17. In characteristic 17 the condition
for the existence of a surface S over C with a 17-torsion section is that C is a covering
of the curve V 2 = U5 − 9U . In characteristic 13 or 2 a surface with a 13-torsion
section, resp. a 16-torsion section, can be realized if and only if the Jacobian of C
contains a factor isogenous to an elliptic curve with j-invariant 0.

We conclude with the following general result, which follows from Theorem 1.2
and Lemma 1.7.

Proposition 2.8. If C is an ordinary curve in characteristic p (i.e., the p-rank of
its Jacobian is g(C)), then for every non-isotrivial elliptic surface S → C we have
|MWp(S/C)| ≤ max{p, 9}.

Note in this context that most curves are ordinary.
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