On the degenerate Beltrami equation
HTML articles powered by AMS MathViewer
- by V. Gutlyanskiĭ, O. Martio, T. Sugawa and M. Vuorinen
- Trans. Amer. Math. Soc. 357 (2005), 875-900
- DOI: https://doi.org/10.1090/S0002-9947-04-03708-0
- Published electronically: October 19, 2004
- PDF | Request permission
Abstract:
We study the well-known Beltrami equation under the assumption that its measurable complex-valued coefficient $\mu (z)$ has the norm $\|\mu \|_\infty =1.$ Sufficient conditions for the existence of a homeomorphic solution to the Beltrami equation on the Riemann sphere are given in terms of the directional dilatation coefficients of $\mu .$ A uniqueness theorem is also proved when the singular set $\operatorname {Sing} (\mu )$ of $\mu$ is contained in a totally disconnected compact set with an additional thinness condition on $\operatorname {Sing}(\mu ).$References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 0200442
- Cabiria Andreian Cazacu, Influence of the orientation of the characteristic ellipses on the properties of the quasiconformal mappings, Proceedings of the Romanian-Finnish Seminar on Teichmüller Spaces and Quasiconformal Mappings (Braşov, 1969) Publ. House of the Acad. of the Socialist Republic of Romania, Bucharest, 1971, pp. 65–85. MR 0318478
- Kari Astala, Tadeusz Iwaniec, Pekka Koskela, and Gaven Martin, Mappings of BMO-bounded distortion, Math. Ann. 317 (2000), no. 4, 703–726. MR 1777116, DOI 10.1007/PL00004420
- P. P. Belinskiĭ, Obshchie svoĭ stva kvazikonformnykh otobrazheniĭ, Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1974 (Russian). MR 0407275
- Lipman Bers, Uniformization by Beltrami equations, Comm. Pure Appl. Math. 14 (1961), 215–228. MR 132175, DOI 10.1002/cpa.3160140304
- Melkana A. Brakalova and James A. Jenkins, On solutions of the Beltrami equation, J. Anal. Math. 76 (1998), 67–92. MR 1676936, DOI 10.1007/BF02786930
- Zhiguo Chen, Estimates on $\mu (z)$-homeomorphisms of the unit disk, Israel J. Math. 122 (2001), 347–358. MR 1826507, DOI 10.1007/BF02809907
- Guy David, Solutions de l’équation de Beltrami avec $\|\mu \|_\infty =1$, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), no. 1, 25–70 (French). MR 975566, DOI 10.5186/aasfm.1988.1303
- F. W. Gehring, A remark on the moduli of rings, Comment. Math. Helv. 36 (1961), 42–46. MR 140682, DOI 10.1007/BF02566891
- Yasuhiro Gotoh and Masahiko Taniguchi, A condition of quasiconformal extendability, Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), no. 4, 58–60. MR 1701526
- David A. Herron, Xiang Yang Liu, and David Minda, Ring domains with separating circles or separating annuli, J. Analyse Math. 53 (1989), 233–252. MR 1014988, DOI 10.1007/BF02793416
- T. Iwaniec and G. Martin, The Beltrami equation – In memory of Eugenio Beltrami (1835–1900), 100 years on, Memoires of the AMS, American Mathematical Society, to appear.
- V. Ī. Kruglikov, The existence and uniqueness of mappings that are quasiconformal in the mean, Metric questions of the theory of functions and mappings, No. IV (Russian), Izdat. “Naukova Dumka”, Kiev, 1973, pp. 123–147 (Russian). MR 0344462
- Olli Lehto, Homeomorphisms with a given dilatation, Proceedings of the Fifteenth Scandinavian Congress (Oslo, 1968) Lecture Notes in Mathematics, Vol. 118, Springer, Berlin, 1970, pp. 58–73. MR 0260997
- Olli Lehto, Remarks on generalized Beltrami equations and conformal mappings, Proceedings of the Romanian-Finnish Seminar on Teichmüller Spaces and Quasiconformal Mappings (Braşov, 1969) Publ. House of the Acad. of the Socialist Republic of Romania, Bucharest, 1971, pp. 203–214. MR 0306489
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- V. M. Mīkljukov and G. D. Suvorov, The existence and uniqueness of quasiconformal mappings with unbounded characteristics, Studies in the theory of functions of a complex variable and its applications (Russian and Ukrainian), Vidannja Īnst. Mat. Akad. Nauk Ukraïn. RSR, Kiev, 1972, pp. 45–53 (Russian). MR 0338361
- I. N. Pesin, Mappings which are quasiconformal in the mean, Dokl. Akad. Nauk SSSR 187 (1969), 740–742 (Russian). MR 0249613
- Edgar Reich and Hubert R. Walczak, On the behavior of quasiconformal mappings at a point, Trans. Amer. Math. Soc. 117 (1965), 338–351. MR 176070, DOI 10.1090/S0002-9947-1965-0176070-9
- V. Ryazanov, U. Srebro, and E. Yakubov, BMO-quasiconformal mappings, J. Anal. Math. 83 (2001), 1–20. MR 1828484, DOI 10.1007/BF02790254
- Uri Srebro and Eduard Yakubov, $\mu$-homeomorphisms, Lipa’s legacy (New York, 1995) Contemp. Math., vol. 211, Amer. Math. Soc., Providence, RI, 1997, pp. 473–479. MR 1477004, DOI 10.1090/conm/211/02837
- G. D. Suvorov, Semeĭ stva ploskikh topologicheskikh otobrazheniĭ, Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk, 1965 (Russian). MR 0199425
- Pekka Tukia, Compactness properties of $\mu$-homeomorphisms, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 1, 47–69. MR 1127696, DOI 10.5186/aasfm.1991.1628
Bibliographic Information
- V. Gutlyanskiĭ
- Affiliation: Institute of Applied Mathematics and Mechanics, NAS of Ukraine, ul. Roze Luxemburg 74, 83114, Donetsk, Ukraine
- Email: gut@iamm.ac.donetsk.ua
- O. Martio
- Affiliation: Department of Mathematics, P.O. Box 68 (Gustaf Hällströmin katu 2b), FIN–00014 University of Helsinki, Finland
- MR Author ID: 120710
- Email: martio@cc.helsinki.fi
- T. Sugawa
- Affiliation: Department of Mathematics, Graduate School of Science, Hiroshima University, 739 – 8526 Higashi-Hiroshima, Japan
- MR Author ID: 318760
- Email: sugawa@math.sci.hiroshima-u.ac.jp
- M. Vuorinen
- Affiliation: Department of Mathematics, FIN–20014 University of Turku, Finland
- MR Author ID: 179630
- Email: vuorinen@csc.fi
- Received by editor(s): February 11, 2002
- Published electronically: October 19, 2004
- Additional Notes: The third author was partially supported by the Academy of Finland and the JSPS while carrying out the present paper.
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 875-900
- MSC (2000): Primary 30C62
- DOI: https://doi.org/10.1090/S0002-9947-04-03708-0
- MathSciNet review: 2110425