Geometry of Fermat adeles
HTML articles powered by AMS MathViewer
- by Alexandru Buium
- Trans. Amer. Math. Soc. 357 (2005), 901-964
- DOI: https://doi.org/10.1090/S0002-9947-04-03715-8
- Published electronically: October 19, 2004
- PDF | Request permission
Abstract:
If $L(a,s):=\sum _n c(n,a)n^{-s}$ is a family of âgeometricâ $L-$functions depending on a parameter $a$, then the function $(p,a)\mapsto c(p,a)$, where $p$ runs through the set of prime integers, is not a rational function and hence is not a function belonging to algebraic geometry. The aim of the paper is to show that if one enlarges algebraic geometry by âadjoining a Fermat quotient operationâ, then the functions $c(p,a)$ become functions in the enlarged geometry at least for $L-$functions of curves and Abelian varieties.References
- Mugurel A. Barcau, Isogeny covariant differential modular forms and the space of elliptic curves up to isogeny, Compositio Math. 137 (2003), no. 3, 237â273. MR 1988499, DOI 10.1023/A:1024123915158
- Mugurel Barcau and Alexandru Buium, Siegel differential modular forms, Int. Math. Res. Not. 28 (2002), 1457â1503. MR 1908022, DOI 10.1155/S1073792802110063
- P. Berthelot and A. Ogus, $F$-isocrystals and de Rham cohomology. I, Invent. Math. 72 (1983), no. 2, 159â199. MR 700767, DOI 10.1007/BF01389319
- Siegfried Bosch, Werner LĂŒtkebohmert, and Michel Raynaud, NĂ©ron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- Alexandru Buium, Differential characters of abelian varieties over $p$-adic fields, Invent. Math. 122 (1995), no. 2, 309â340. MR 1358979, DOI 10.1007/BF01231447
- Alexandru Buium, Geometry of $p$-jets, Duke Math. J. 82 (1996), no. 2, 349â367. MR 1387233, DOI 10.1215/S0012-7094-96-08216-2
- Alexandru Buium, Differential characters and characteristic polynomial of Frobenius, J. Reine Angew. Math. 485 (1997), 209â219. MR 1442195, DOI 10.1515/crll.1997.485.209
- Alexandru Buium, Differential modular forms, J. Reine Angew. Math. 520 (2000), 95â167. MR 1748272, DOI 10.1515/crll.2000.024
- Alexandru Buium, Infinitesimal Mordell-Lang, J. Number Theory 90 (2001), no. 2, 185â206. MR 1858073, DOI 10.1006/jnth.2001.2663
- Bernard Dwork, A deformation theory for the zeta function of a hypersurface, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 247â259. MR 0175895
- B. Dwork and A. Ogus, Canonical liftings of Jacobians, Compositio Math. 58 (1986), no. 1, 111â131. MR 834049
- Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford. MR 1083353, DOI 10.1007/978-3-662-02632-8
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523, DOI 10.1002/9781118032527
- Michiel Hazewinkel, Formal groups and applications, Pure and Applied Mathematics, vol. 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506881
- Chris Hurlburt, Isogeny covariant differential modular forms modulo $p$, Compositio Math. 128 (2001), no. 1, 17â34. MR 1847663, DOI 10.1023/A:1017536003747
- Yasutaka Ihara, On Fermat quotients and âthe differentials of numbersâ, SĆ«rikaisekikenkyĆ«sho K\B{o}kyĆ«roku 810 (1992), 324â341 (Japanese). Algebraic analysis and number theory (Kyoto, 1992). MR 1248209
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- Nicholas M. Katz and William Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73â77. MR 332791, DOI 10.1007/BF01405203
- William Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Mathematics, Vol. 264, Springer-Verlag, Berlin-New York, 1972. MR 0347836, DOI 10.1007/BFb0058301
- Leonhard Miller, Curves with invertible Hasse-Witt-matrix, Math. Ann. 197 (1972), 123â127. MR 314849, DOI 10.1007/BF01419588
- P. Monsky and G. Washnitzer, The construction of formal cohomology sheaves, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1511â1514. MR 171787, DOI 10.1073/pnas.52.6.1511
- Frans Oort, A stratification of a moduli space of polarized abelian varieties in positive characteristic, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 47â64. MR 1722538
- Jean-Pierre Serre, Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, Springer-Verlag, New York, 1988. Translated from the French. MR 918564, DOI 10.1007/978-1-4612-1035-1
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368, DOI 10.1007/978-1-4612-0851-8
- JosĂ© Felipe Voloch, On a question of Buium, Canad. Math. Bull. 43 (2000), no. 2, 236â238. MR 1754028, DOI 10.4153/CMB-2000-031-6
Bibliographic Information
- Alexandru Buium
- Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
- Email: buium@math.unm.edu
- Received by editor(s): August 16, 2000
- Received by editor(s) in revised form: May 14, 2002
- Published electronically: October 19, 2004
- Additional Notes: The author was partially supported by NSF grants DMS 9996078 and 0096946.
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 357 (2005), 901-964
- MSC (2000): Primary 11G05, 11G30
- DOI: https://doi.org/10.1090/S0002-9947-04-03715-8
- MathSciNet review: 2110426