On adic genus and lambda-rings
HTML articles powered by AMS MathViewer
- by Donald Yau
- Trans. Amer. Math. Soc. 357 (2005), 1341-1348
- DOI: https://doi.org/10.1090/S0002-9947-04-03493-2
- Published electronically: May 10, 2004
- PDF | Request permission
Abstract:
Sufficient conditions on a space are given which guarantee that the $K$-theory ring is an invariant of the adic genus. An immediate consequence of this result about adic genus is that for any positive integer $n$, the power series ring $\mathbf {Z} \lbrack \lbrack x_1, \ldots , x_n \rbrack \rbrack$ admits uncountably many pairwise non-isomorphic $\lambda$-ring structures.References
- J. F. Adams, Localisation and completion, University of Chicago, Department of Mathematics, Chicago, Ill., 1975. With an addendum on the use of Brown-Peterson homology in stable homotopy; Lecture notes by Z. Fiedorowicz on a course given at the University of Chicago in Spring, 1973. MR 0420607
- M. F. Atiyah, Power operations in $K$-theory, Quart. J. Math. Oxford Ser. (2) 17 (1966), 165β193. MR 202130, DOI 10.1093/qmath/17.1.165
- M. F. Atiyah and D. O. Tall, Group representations, $\lambda$-rings and the $J$-homomorphism, Topology 8 (1969), 253β297. MR 244387, DOI 10.1016/0040-9383(69)90015-9
- J. Michael Boardman, Conditionally convergent spectral sequences, Homotopy invariant algebraic structures (Baltimore, MD, 1998) Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp.Β 49β84. MR 1718076, DOI 10.1090/conm/239/03597
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- F. J. B. J. Clauwens, Commuting polynomials and $\lambda$-ring structures on $\textbf {Z}[x]$, J. Pure Appl. Algebra 95 (1994), no.Β 3, 261β269. MR 1295960, DOI 10.1016/0022-4049(94)90061-2
- A. Jeanneret and A. Osse, The $K$-theory of $p$-compact groups, Comment. Math. Helv. 72 (1997), no.Β 4, 556β581. MR 1600146, DOI 10.1007/s000140050034
- David Copeland Johnson and W. Stephen Wilson, $BP$ operations and Moravaβs extraordinary $K$-theories, Math. Z. 144 (1975), no.Β 1, 55β75. MR 377856, DOI 10.1007/BF01214408
- Donald Knutson, $\lambda$-rings and the representation theory of the symmetric group, Lecture Notes in Mathematics, Vol. 308, Springer-Verlag, Berlin-New York, 1973. MR 0364425
- Charles A. McGibbon, The Mislin genus of a space, The Hilton Symposium 1993 (Montreal, PQ), CRM Proc. Lecture Notes, vol. 6, Amer. Math. Soc., Providence, RI, 1994, pp.Β 75β102. MR 1290585, DOI 10.1090/crmp/006/05
- Jesper Michael MΓΈller, The normalizer of the Weyl group, Math. Ann. 294 (1992), no.Β 1, 59β80. MR 1180450, DOI 10.1007/BF01934313
- Dietrich Notbohm, Maps between classifying spaces and applications, J. Pure Appl. Algebra 89 (1993), no.Β 3, 273β294. MR 1242722, DOI 10.1016/0022-4049(93)90057-Z
- D. Notbohm and L. Smith, Fake Lie groups and maximal tori. I β III, Math. Ann. 288 (1990) 637-661, 663-673 and 290 (1991) 629-642.
- David L. Rector, Loop structures on the homotopy type of $S^{3}$, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971) Lecture Notes in Math., Vol. 249, Springer, Berlin, 1971, pp.Β 99β105. MR 0339153
- David L. Rector, Subgroups of finite dimensional topological groups, J. Pure Appl. Algebra 1 (1971), no.Β 3, 253β273. MR 301734, DOI 10.1016/0022-4049(71)90021-1
- Y. Shitanda, Uncountably many loop spaces of the same $n$-type for all $n$. I and II, Yokohama Math. J. 41 (1993) 17-24 and 41 (1994) 85-93.
- Yoshimi Shitanda, Uncountably many infinite loop spaces of the same $n$-type for all $n$, Math. J. Okayama Univ. 34 (1992), 217β223 (1994). MR 1272623
- Yoshimi Shitanda, Spaces of the same clone type, J. Math. Soc. Japan 48 (1996), no.Β 4, 705β714. MR 1404818, DOI 10.2969/jmsj/04840705
- Clarence Wilkerson, Classification of spaces of the same $n$-type for all $n$, Proc. Amer. Math. Soc. 60 (1976), 279β285 (1977). MR 474283, DOI 10.1090/S0002-9939-1976-0474283-2
- Clarence W. Wilkerson, Applications of minimal simplicial groups, Topology 15 (1976), no.Β 2, 111β130. MR 402737, DOI 10.1016/0040-9383(76)90001-X
- Clarence Wilkerson, Lambda-rings, binomial domains, and vector bundles over $\textbf {C}P(\infty )$, Comm. Algebra 10 (1982), no.Β 3, 311β328. MR 651605, DOI 10.1080/00927878208822717
Bibliographic Information
- Donald Yau
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Illinois 61801
- Email: dyau@math.uiuc.edu
- Received by editor(s): May 1, 2002
- Received by editor(s) in revised form: August 1, 2003
- Published electronically: May 10, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 1341-1348
- MSC (2000): Primary 55P15; Secondary 55N15, 55P60, 55S25
- DOI: https://doi.org/10.1090/S0002-9947-04-03493-2
- MathSciNet review: 2115369