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MEASURABLE KAC COHOMOLOGY
FOR BICROSSED PRODUCTS

SAAD BAAJ, GEORGES SKANDALIS, AND STEFAAN VAES

Abstract. We study the Kac cohomology for matched pairs of locally com-
pact groups. This cohomology theory arises from the extension theory of
locally compact quantum groups. We prove a measurable version of the Kac
exact sequence and provide methods to compute the cohomology. We give
explicit calculations in several examples using results of Moore and Wigner.

1. Introduction

In order to construct, in a systematic way, examples of finite quantum groups,
G. Kac developed in [13] a method to obtain non-trivial (i.e. non-commutative and
non-cocommutative) quantum groups as extensions of a finite group by a finite
group dual. Such an extension of a finite group G1 with the dual of a finite group
G2 is described by the following data:

• a large group G such that G1 and G2 are subgroups of G satisfying G1∩G2 =
{e} and G = G1G2 (we say that G1, G2 ⊂ G is a matched pair),

• a compatible pair of 2-cocycles (see (5) below).
Two extensions are isomorphic if and only if the matched pairs are the same and the
pairs of 2-cocycles are cohomologous. As such, there appears a natural cohomology
group associated with a matched pair. G. Kac found in [13] an exact sequence which
permits to calculate this cohomology group in terms of the usual cohomology groups
of G1, G2 and G with coefficients in T, the group of complex numbers of modulus
1.

The above theory of extensions has been generalized to the framework of locally
compact quantum groups (in the sense of Kustermans and the third author [14, 15])
by Vainerman and the third author [23]: extensions in the category of locally
compact quantum groups are exactly described using matched pairs with cocycles.
Again, there appears a natural cohomology group. The aim of this paper is to
study this cohomology group, to prove a version of the Kac exact sequence in a
locally compact setting and to compute the cohomology in concrete examples. As
such, we shall provide a precise explanation for the calculations in [24].

Given a matched pair of locally compact groups (see Definition 2.1), the first
two authors introduced in [3] an alternative notion of cocycles and, hence, another
cohomology group. An awkward, but straightforward, calculation yields that both
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cohomology groups agree for matched pairs of discrete (and in particular, finite)
groups. Below, we will use a more elegant approach that permits us to conclude
that both cohomologies agree for the most general matched pairs of locally compact
groups.

After the fundamental work of Kac [13], matched pairs of locally compact groups
have been studied by Majid [18, 19] in order to construct examples of Kac algebras.
His definition of a matched pair of locally compact groups G1, G2 ⊂ G requires
that G1 ∩G2 = {e} and that the multiplication map G1 ×G2 → G is a homeomor-
phism onto G. The first two authors [3, 4] gave a more general definition, allowing
G1G2 to be an open subset of G with complement of measure zero. Using such
a matched pair, they constructed a multiplicative unitary, given by a pentagonal
transformation. The most general definition of a matched pair has been introduced
in [23] by Vainerman and the third author and in [5] by the authors, requiring only
that G1 ∩G2 = {e} and that G1G2 has a complement of measure zero. We remark
here that examples of such matched pairs, with G1G2 having empty interior, were
given in [5] and used to construct examples of locally compact quantum groups
with remarkable topological properties.

We mention that algebraic work on matched pairs and Kac cohomology for Hopf
algebras and Lie algebras has been done in e.g. [1, 20, 22].

2. Preliminaries

In this paper, all locally compact spaces will be supposed second countable. We
denote by T the group of complex numbers of modulus 1, which we will often write
additively through the identification with R/Z.

Definition 2.1. We call G1, G2 ⊂ G a matched pair of locally compact groups if
G1, G2 are closed subgroups of the locally compact group G such that G1∩G2 = {e}
and G \ G1G2 has Haar measure zero.

Notation 2.2. Given a matched pair G1, G2 ⊂ G of locally compact groups, we
define, almost everywhere on G,

p1 : G → G1 , p2 : G → G2 such that x = p1(x) p2(x) ,

q1 : G → G1 , q2 : G → G2 such that x = q2(x) q1(x) .

We will deal with cohomology theories with coefficients in Polish G-modules.
Therefore, the following will be useful to us.

Notation 2.3. Let X be a standard Borel space equipped with a Borel measure
class. Let A be a Polish space. We define L(X, A) to be the set of equivalence
classes of Borel measurable functions of X to A identifying functions equal almost
everywhere. Choosing a finite measure µ on X in the given measure class and a
bounded complete metric ρ on A, we can define

ρµ(F, G) :=
∫

ρ(F (x), G(x)) dµ(x) for all F, G ∈ L(X, A) .

In this way, L(X, A) is a Polish space. The topology on L(X, A) does not depend
on the choice of µ or ρ; see the Corollary to Proposition 6 in [21].

In Theorem 1 of [21], the Fubini theorem is used to prove that there are natural
isomorphisms L(X, L(Y, A)) ∼= L(X×Y, A) ∼= L(Y, L(X, A)) for all Polish spaces A.
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We finally introduce the measurable cohomology of a locally compact group G,
as studied by Moore [21] and D. Wigner [25].

Let G be a locally compact group and let A be a Polish G-module. We write
face operators

∂i : Gn+1 → Gn : ∂i(g0, . . . , gn) =


(g1, . . . , gn) if i = 0,

(g0, . . . , gi−1gi, . . . , gn) if i = 1, . . . , n,

(g0, . . . , gn−1) if i = n + 1 .

Dualizing, we can write at least two natural measurable cochain complexes. First,
consider

di : L(Gn, A) → L(Gn+1, A) : (di F )(−→g ) =

{
g0 · F (∂0

−→g ) if i = 0 ,

F (∂i
−→g ) if i = 1, . . . , n + 1 ,

(1)

where −→g = (g0, . . . , gn) and

d : L(Gn, A) → L(Gn+1, A) : d =
n+1∑
i=0

(−1)i di .(2)

Definition 2.4. The cohomology of the cochain complex (L(Gn, A))n defined above
is denoted by H(G, A) and called the measurable cohomology of the locally compact
group G with coefficients in the Polish G-module A.

Instead of using L(Gn, A), we can use the Z-module FBorel(Gn, A) of Borel mea-
surable functions from Gn to A. We define the coboundary with the same for-
mula as in (1)-(2). Moore [21] proved that the obvious cochain transformation
(FBorel(Gn, A)) → (L(Gn, A)) is a cohomology isomorphism.

In fact, there is more. Let G be a locally compact group and consider a certain
category of G-modules. Suppose that H(G, A) and H̃(G, A) are two cohomology
theories satisfying the Buchsbaum criterion [9]:

• every short exact sequence of G-modules gives rise, in a natural way, to a
long exact cohomology sequence,

• effaceability, i.e. for every α ∈ Hn(G, A) there exists a short exact sequence
0 → A → B → C → 0 such that α is 0 in Hn(G, B).

Now if H0(G, A) and H̃0(G, A) are naturally isomorphic, we can conclude that
Hn(G, A) and H̃n(G, A) are naturally isomorphic for all n. Further, any natural
sequence of homomorphisms Hn(G, A) → H̃n(G, A) which is connected (i.e. re-
spects the long exact cohomology sequences) and which gives an isomorphism for
n = 0, will be an isomorphism for all n.

Another way of describing the measurable cohomology of G is through the right
notion of a free resolution.

Definition 2.5. We say that a Polish G-module A is free if there exists a Polish
G-module B such that A ∼= L(G, B).

Let A be a Polish G-module. We call

(3) 0 −→ A −→ A0 −→ A1 −→ · · ·
a resolution of A, if all Ai are Polish G-modules, the arrows are G-equivariant and
continuous, and the sequence in the previous equation is exact.
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We say that the resolution in (3) is a free resolution of A if every Polish G-module
Ai, i ≥ 0, is free.

Whenever 0 −→ A −→ A0 −→ A1 −→ · · · is a free resolution of the Polish G-
module A, the measurable cohomology H(G, A) is the cohomology of the complex

AG
0 −→ AG

1 −→ · · · ,

where AG
i denotes the G-fixed points of Ai. Again, as above, if we have two free

resolutions of A:

0 −→ A −→ A0 −→ A1 −→ · · · and 0 −→ A −→ B0 −→ B1 −→ · · ·

and if we are given continuous G-equivariant homomorphisms Ai → Bi intertwining
the two free resolutions, then these homomorphisms induce a cohomology isomor-
phism.

In Section 7, we explain the methods developed by D. Wigner to compute the
measurable cohomology H(G, A) in certain cases.

3. Two Kac 2-cohomology groups and the Kac bicomplex

The Kac 2-cohomology appears in two natural ways. In both pictures, it is at
first somehow awkward to write the cocycle relations. We will see below how a
much more natural way of writing these relations can be obtained. This will also
allow us to unify both pictures and prove that they define the same 2-cohomology
group.

3.1. 2-cohomology of matched pairs. First of all, we want to classify extensions

(4) e −→ (L∞(G1), ∆1) −→ (M, ∆) −→ (L(G2), ∆̂2) −→ e,

where (M, ∆) is a locally compact quantum group. Here, we do not explain the
notion of such an extension in the framework of locally compact quantum groups
(see Definition 3.2 in [23]). All good (i.e., cleft) extensions can be written as a
cocycle bicrossed product of G1 and G2; see Theorem 3.6 in [23]. Using Remark
5.3 in [5] and Lemma 4.11 in [23], this means that

• there exists a locally compact group G such that G1, G2 are closed sub-
groups of G forming a matched pair in the sense of Definition 2.1,

• there exists a compatible pair (U ,V) of 2-cocycles on the matched pair
G1, G2. This means that U : G2 ×G1 ×G1 → T and V : G2 ×G2 ×G1 → T

are measurable maps satisfying the (awkward) relations

U(p2(sg), h, k) U(s, gh, k) U(s, g, hk) U(s, g, h) = 1 ,

V(t, r, g) V(st, r, g) V(s, tr, g) V(s, t, p1(rg)) = 1 ,(5)

U(t, g, h) U(st, g, h) U(s, p1(tg), p1(p2(tg)h)) V(p2(sp1(tg)), p2(tg), h)×
V(s, t, gh) V(s, t, g) = 1 ,

for almost all s, t, r ∈ G2 and g, h, k ∈ G1.
The locally compact quantum group (M, ∆) is the cocycle bicrossed product con-
structed with this data of a matched pair and a compatible pair of 2-cocycles.

From Proposition 3.8 in [23], we know that two extensions are isomorphic if and
only if the associated matched pairs of locally compact groups are the same and
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there exists a measurable map R : G2 × G1 → T such that the pairs of 2-cocycles
(U ,V) differ by a trivial pair of 2-cocycles (UR,VR) defined by

UR(s, g, h) = R(p2(sg), h) R(s, gh) R(s, g) ,

VR(s, t, g) = R(t, g) R(st, g) R(s, p1(tg)) .
(6)

This leads us to the following definition (Terminology 4.21 in [23]).

Definition 3.1. Let G1, G2 ⊂ G be a matched pair of locally compact groups.
The associated group of extensions is defined as the group of pairs of 2-cocycles
(U ,V) ∈ L(G2 × G2

1, T) ⊕ L(G2
2 × G1, T) satisfying (5), modulo the subgroup of

trivial cocycles defined by (6).

As a conclusion, we see that extensions (4) are classified by a matched pair
G1, G2 ⊂ G and the associated group of extensions.

3.2. 2-cohomology of pentagonal transformations. Secondly, fix a matched
pair G1, G2 ⊂ G. There is an associated bicrossed product locally compact quantum
group (M, ∆) with multiplicative unitary W . By definition (see [3]), a multiplicative
unitary is a unitary operator on a tensor square H ⊗ H of a Hilbert space H ,
satisfying the pentagonal equation

W12 W13 W23 = W23 W12

on H⊗H⊗H . For the bicrossed product of G1, G2 ⊂ G, this multiplicative unitary
is given, as in [3, 4] and up to some identifications, by the formula (Wξ)(x, y) =
d(x, y)1/2ξ(w(x, y)) for x, y ∈ G, where

(7) w(x, y) = (xp1(p2(x)−1y), p2(x)−1y)

and where d(x, y) is the Radon-Nikodym derivative making W a unitary operator
on L2(G×G). In Définition 8.24 of [3], a 2-cocycle for the matched pair G1, G2 ⊂ G

is defined as a measurable function θ̃ : G × G → T such that Wθ̃ := θ̃ W is still a
multiplicative unitary. Here, θ̃ denotes as well the multiplication operator by the
function θ̃. A trivial 2-cocycle is a 2-cocycle of the form θ̃(x, y) = t(x, y)t(w(x, y)),
where t(x, y) = a(x) a(y) for some measurable function a : G → T. In that case
Wθ̃ = (a⊗ a)W (a∗ ⊗ a∗), which motivates why such a θ̃ is considered to be trivial.
Dividing the group of 2-cocycles by trivial 2-cocycles, we get again a 2-cohomology
group. For finite groups G1, G2, the computational argument in Section 4.4 of
[23] allows us to conclude that this 2-cohomology group is isomorphic with the 2-
cohomology group defined in Definition 3.1 using pairs (U ,V). The more delicate
general case will be dealt with below.

Observing that w = w1 ◦ w2, where w1(x, y) = (xp1(y), y) and w2(x, y) =
(x, p2(x)−1y), we write W = W2W1. To simplify formulas, we may as well de-
fine a 2-cocycle as a measurable function θ : G × G → T such that W2 θ W1

is a multiplicative unitary. Of course, one can pass from θ to θ̃ by the formula
θ̃(x, y) = θ(w2(x, y)). The 2-cocycle relation for θ becomes

(8) θ(x, y) θ(xp1(y), p2(y)z) θ(y, z) = θ(p2(x)y, z) θ(x, yp1(z))

for almost all x, y, z ∈ G. Trivial 2-cocycles are given by the formula

(9) θ(x, y) = a(x) a(p2(x)y) a(xp1(y)) a(y)

for some measurable function a : G → T and almost all x, y ∈ G.
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Definition 3.2. Let G1, G2 ⊂ G be a matched pair. The 2-cohomology group
associated with the pentagonal transformation (7) is defined as the group of cocycles
θ ∈ L(G × G, T) satisfying (8), divided by the subgroup of trivial cocycles defined
by (9).

3.3. The Kac bicomplex. Now fix a matched pair G1, G2 ⊂ G. Define the closed
subspace Γ11 ⊂ G1 × G1 × G2 × G2 as follows:

Γ11 :=
{ s

gh

t

∣∣∣ g, h ∈ G1, s, t ∈ G2, sg = ht
}

.

Lemma 3.3. The maps

Γ11 → G1 × G2 :
s

gh

t


→


(g, s),
(g, t),
(h, s),
(h, t)

and Γ11 → G :
s

gh

t


→ sg

are injective. Their ranges have complement of measure zero and all these maps
define the same measure class on Γ11.

Proof. This follows immediately from Proposition 3.2 in [5] and the remarks fol-
lowing that proposition. �

When x ∈ G1G2 ∩ G2G1 (and, as follows from the previous lemma, almost all

x ∈ G are like that), we sometimes write
s

gh

t

x to denote the element
s

gh

t

∈

Γ11 satisfying sg = ht = x. We even use x to denote the same element.
So, we defined the space Γ11 by labelling the edges of a square. We will use this

to give a non-equivariant image of our cohomology theory. There is an analogous
equivariant image. We define Υ11 ⊂ G4 as follows:

Υ11 :=
{

z

x y

w

∣∣∣ x, y, z, w ∈ G, x−1z, y−1w ∈ G1, x−1y, z−1w ∈ G2

}
.

There is a natural action of G on Υ11 given by

v ·
(

z

x y

w

)
=

vz

vx vy

vw.

and a natural homeomorphism G × Γ11 → Υ11 given by(
v ,

s
gh

t

x

)

→

vh

v vs

vx

.
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We define more generally the space Γpq (which is, stricto sensu, a closed subspace
of G

p(q+1)
1 × G

(p+1)q
2 ) consisting of elements X ∈ Γpq defined by

(10) X =

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...

s01 s02 s0q

s11 s12 s1q

s21 s22 s2q

sp1 sp2 spq

gp0

g20

g10

gp1

g21

g11

gp2

g22

g12

gpq

g2q

g1q

where all gij ∈ G1, sij ∈ G2 and every small square of the above picture belongs
to Γ11. This means, e.g., that s12g22 = g21s22. More generally, this means that
if one chooses two vertices in X and a path between them, then the result of the
multiplication of all the edges along the path does not depend on the chosen path.
As such, we define Γpq whenever p + q �= 0. We define Γ00 to be one point and
remark that Γp0 = Gp

1 and Γ0q = Gq
2.

Of course, we have again an analogous equivariant image Υpq ⊂ G(p+1)×(q+1),
consisting of (p + 1) × (q + 1)-matrices Y with entries in G

(11) Y =

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...

x00 x01 x02 x0,q

x10 x1qx11 x12

x20 x21 x22 x2q

xp0 xp1 xp2 xp,q

such that the elements on a fixed row define the same element of G/G2 and the
elements on a fixed column define the same element of G/G1. More formally,
x−1

ij xkj ∈ G1 and x−1
ij xik ∈ G2.

Again, we have an action of v ∈ G on Y ∈ Υpq, multiplying all xij in (11) by v
on the left. We get a homeomorphism Υpq → G × Γpq, which sends an element Y

to the couple (x00, X), where X is defined by gij = x−1
i−1,jxij and sij = x−1

i,j−1xij .

Remark 3.4. An element of Γpq is uniquely determined once we know one row and
one column. The mapping Γpq → Gp

1 × Gq
2 picking out one column and one row is

injective and its image has a complement of measure zero. It follows from Lemma
3.3 that all these mappings induce the same measure class on Γpq.
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Also the mapping Γpq → Γk,l × Γp−k,q−l, sending a matrix to its upper left and
lower right corner, is injective. Its image has a complement of measure zero and
the map is a measure class isomorphism.

We define horizontal and vertical face operators on Υpq:

∂h
i : Υpq → Υp,q−1 : ∂h

i removes the i-th column (for i = 0, . . . , q) and

∂v
j : Υpq → Υp−1,q : ∂v

j removes the j-th row (for j = 0, . . . , p) .

These face operators are obviously G-equivariant, and so we get face operators
on Γpq, defined as follows. The face ∂h

i contracts the i-th column multiplying the
adjacent horizontal edges. In a concrete example, this means that

∂h
0

(
g h k

t t′

s s′ )
=

s′

kh

t′
, ∂h

1

(
g h k

t t′

s s′ )
=

ss′

kg

tt′
and

∂h
2

(
g h k

t t′

s s′ )
=

s
hg

t

.

It will be clear how to define the vertical face ∂v
j contracting the j-th row and

multiplying the adjacent vertical edges. Observe that ∂h
i ∂h

j = ∂h
j−1∂

h
i if i < j.

Let A be a Polish G-module.

Notation 3.5. Following Notation 2.3, we consider the Polish spaces L(Γpq, A)
and L(Υpq, A). Using the action of G on Υpq, we turn L(Υpq, A) into a Polish
G-module, defining

(x · F )(Y ) = x · F (x−1 · Y )

for x ∈ G and Y ∈ Υpq. We denote by L(Υpq, A)G the Z-module of G-invariant
elements of L(Υpq, A). We have a natural identification L(Γpq, A) ∼= L(Υpq, A)G.

We define a bicomplex (see [17])

(12)

...
...

dv

� dv

�
L(Γ21, A) dh

−−−−→ L(Γ22, A) dh

−−−−→ · · ·

dv

� dv

�
L(Γ11, A) dh

−−−−→ L(Γ12, A) dh

−−−−→ · · ·

where the arrows can be defined most easily using Notation 3.5 and the equivariant
coboundary operators

dh : L(Υpq, A) → L(Υp,q+1, A) : (dh F )(Y ) =
q+1∑
i=0

(−1)i F (∂h
i Y ) ,

dv : L(Υpq, A) → L(Υp+1,q, A) : (dv F )(Y ) =
p+1∑
j=0

(−1)j F (∂v
j Y ) .

(13)
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A small calculation reveals that, on Γpq rather than Υpq, we get

dh : L(Γpq, A) → L(Γp,q+1, A) : (dh F )(X) = s01 · F (∂h
0X) +

q+1∑
i=1

(−1)i F (∂h
i X) ,

dv : L(Γpq, A) → L(Γp+1,q, A) : (dv F )(X) = g10 · F (∂v
0X) +

p+1∑
j=1

(−1)j F (∂v
j X) ,

when X ∈ Γp,q+1 or Γp+1,q are as in (10). It is clear that we have in fact face
operators

dh
i : L(Γpq , A) → L(Γp,q+1) for 0 ≤ i ≤ q + 1 and dh =

q+1∑
i=0

(−1)i dh
i ,

dv
i : L(Γpq, A) → L(Γp+1,q, A) for 0 ≤ i ≤ p + 1 and dv =

p+1∑
i=0

(−1)i dv
i .

(14)

For reasons that will become clear later, the elements of L(Γ11, A) should be
considered as 1-cochains rather than 0-cochains. So, the total complex is defined
as

(15) Cn(A) =
⊕

p+q=n+1

L(Γpq , A)

and

(16) d : Cn(A) → Cn+1(A) : d = dh + ε dv,

where ε(F ) = (−1)q when F ∈ L(Γpq, A).
We shall see in Proposition 4.4 how to define in a natural way C0 = A and

d : C0 → C1.
The following proposition is almost obvious.

Proposition 3.6. The group of extensions of the matched pair G1, G2 ⊂ G is
precisely the second cohomology group of the total complex defined by (15) with
coefficients in the trivial G-module T.

Proof. This is just a matter of making the right identifications, taking into account
Remark 3.4. If U : G2 × G1 × G1 → T and V : G2 × G2 × G1 → T are measurable
maps, we define

U
(

h

g

s )
= U(s, g, h) and V

(
g

s t )
= V(s, t, g) .

Then, (U ,V) ∈ C2(T). The equation d(U ,V) = 0 agrees precisely with the three

equations in (5). Further, if R : G2 ×G1 → T, we define R
( s

g
)

= R(s, g). The
equation dR = (U ,V) is equivalent with (6). �

Remark 3.7. The locally compact space Γ11 carries the structure of a double groupoid
[7, 8]. The horizontal groupoid Γh has unit space Γ(0)

h = G1 which is embedded by
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g 
→
e

gg

e

. The source and range maps are defined by

Source
( s

gh

t

)
= g and Range

( s
gh

t

)
= h .

The composition is defined by
s

gh

t

·
s′

h′g

t′
=

ss′

h′h

tt′
.

Analogously, the same space Γ11 carries a second groupoid structure, the vertical
groupoid Γv, with unit space Γ(0)

v = G2. Composition is now defined by vertical
composition of squares. As such, Γ11 becomes a double groupoid: if x, y, z, v are
such that (x, y), (z, v) ∈ Γ(2)

h and (x, z), (y, v) ∈ Γ(2)
v , then (x ·h y, z ·h v) ∈ Γ(2)

v ,
(x ·v z, y ·v v) ∈ Γ(2)

h and

(x ·h y) ·v (z ·h v) = (x ·v z) ·h (y ·v v) .

This is obvious if one just looks at the square

x

v

y

z
.

The bicomplex (12) can now be written down analogously for double groupoids
and gives a natural candidate for a double groupoid cohomology.

4. The Kac exact sequence

We still have a fixed matched pair G1, G2 ⊂ G of locally compact groups. We
consider a Polish G-module A.

Looking at the bicomplex (12), it is natural to add a row and a column and to
write

(17)

...
...

dv

� dv

�
L(Γ10, A) dh

−−−−→ L(Γ11, A) dh

−−−−→ · · ·

dv

� dv

�
L(Γ00, A) dh

−−−−→ L(Γ01, A) dh

−−−−→ · · ·
Proposition 4.1. The cohomology of the total bicomplex of (17) is isomorphic with
the measurable cohomology of G with coefficients in the Polish G-module A. More-
over, (18) defines an explicit cohomology isomorphism. The inverse isomorphism
is given explicitly in Remark 4.2.

Proof. In order to prove that the cohomology of the total bicomplex of (17) is
precisely the measurable cohomology of G, we consider the G-equivariant bicomplex
(L(Υpq, A))p,q≥0 and embed A ↪→ L(Υ00, A) as constant functions. We first prove
that the total bicomplex completed with the embedding A ↪→ L(Υ00, A) gives a
free resolution of A.

By definition, each of the Polish G-modules L(Υpq, A) ∼= L(G, L(Γpq, A)) is free.
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Consider now an arbitrary row in the bicomplex (L(Υpq, A))p,q≥0. Using the
isomorphism of L(Υp,q+1, A) with L(Υpq × G2, A) through the identification of

X

x

∈ Υp,q+1 with (X, p2(x)) ∈ Υpq × G2

almost everywhere, we can write, for F ∈ L(Υpq, A), that

(dh F )(X, s) = dh(F (·, s))(X) + (−1)q+1F (X)

almost everywhere. Hence, if F ∈ L(Υpq, A) and dh F = 0, we can use the Fubini
theorem to take an s ∈ G2 such that 0 = dh(F (·, s))(X)+ (−1)q+1F (X) for almost
all X ∈ Υpq. So, the horizontal cohomology of the bicomplex (L(Υpq, A))p,q≥0

vanishes. It follows that the the total cohomology is supported on the first column.
More precisely, this means that the total cohomology is the cohomology of the

complex T p = {F ∈ L(Υp0, A) | dh F = 0} with dv as a coboundary operator.
Completing with A ↪→ L(Υ00, A), we claim that we precisely get the standard
resolution for the measurable cohomology of G1 with coefficients in A. Observe
that L(Υp0, A) ∼= L(G2 × Gp+1

1 , A) through the identification of the column vector
(x0, . . . , xp) in Υp0 with (p2(x0), p1(x0), . . . , p1(xp)) ∈ G2 × Gp+1

1 almost every-
where. It is then easy to check that T p ∼= L(Gp+1

1 , A) and that this isomorphism
intertwines dv with the usual group coboundary operator. This proves our claim.
So, we have proven that the total bicomplex of (L(Υpq, A))p,q≥0, completed with
A ↪→ L(Υ00, A) gives a free resolution of A. Hence, the measurable group cohomol-
ogy H(G, A) is given as the total cohomology of the bicomplex (L(Υpq, A)G)p,q≥0,
which is precisely (L(Γpq , A))p,q≥0.

Denote the total bicomplex of (17) by D(A) = (Dn(A))n≥0. We have proved
that H(D(A)) ∼= H(G, A). But there is more. Since the cohomology H(D, A)
turns short exact sequences of coefficient modules in a natural way into short exact
cohomology sequences, the cohomology theory H(D, A) satisfies the Buchsbaum
criterion. We can calculate H(G, A) using the complex (FBorel(Gn, A))n≥0, where
FBorel denotes all Borel measurable functions and where the coboundary maps are
defined in the Preliminaries. Now whenever I : (FBorel(Gn, A)) → (Dn(A)) is a nat-
ural cochain transformation, which is the identity on FBorel(G0, A) = A = D0(A),
we can conclude that this cochain transformation is a cohomology isomorphism.
Such a cochain transformation can be written as

(18) I : FBorel(Gn, A) → Dn(A) : I(F )(X) =
∑

path in X

Sign(path) F (path) ,

where X ∈ Γpq, p + q = n and a path in e.g. X ∈ Γ23 is a thing like

s
g

t r

h

Here F (path) = F (s, g, t, r, h) and Sign(path) equals (−1)# squares above the path, i.e.,
(−1)2 = 1.

More formally, a path in X ∈ Γpq is a path that starts in the top left corner
of X , goes either down or right and ends, after p + q = n steps in the bottom
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right corner of X . We evaluate F ∈ FBorel(Gn, A) on the edges along the path of
length n. The sign of the path is defined as −1 to the power the number of squares
that are above the path. An elementary computation learns that I is a cochain
transformation. �

Remark 4.2. We can also write a natural cochain transformation I ′ : Dn(A) →
L(Gn, A), yielding the inverse isomorphism H(D(A)) → H(G, A). Define the mea-
sure class isomorphism Gn → Γnn : (x1, . . . , xn) 
→ X(x1, . . . , xn), where

X(x1) = x1 , X(x1, x2) =
x1

x2

and where X(x1, . . . , xn) ∈ Γnn is defined analogously by putting x1, . . . , xn in
boxes along the diagonal. Further, we define Pi : Γnn → Γn−i,i, where PiX is the
lower left corner of X , i.e. consisting of the n − i final lines and i first columns of
X . We can now define

I ′ : Dn(A) → L(Gn, A) : I ′(F )(x1, . . . , xn) =
n∑

i=0

F
(
Pi(X(x1, . . . , xn))

)
.

One verifies that I ′ is a cochain transformation.

Observe that Γ0n = Gn
2 and that dh : L(Γ0n, A) → L(Γ0,n+1, A) coincides with

the usual coboundary operator d : L(Gn
2 , A) → L(Gn+1

2 , A). Making the same
observation for the first column of the bicomplex (17), we obtain a natural cochain
transformation

J : (Dn(A))n → (Kn(A))n, where

Dn(A) =
⊕

p+q=n

L(Γpq , A) and Kn(A) = L(Gn
1 , A) ⊕ L(Gn

2 , A),(19)

and where we just have to explain that, for n = 0, we take A  a 
→ a⊕ a ∈ A⊕A.
The following definition may seem a bit pedantic, but implies in a natural way

how to define the Kac 0-cohomology (see Proposition 4.4 for the link with the
cohomology of the cochain complex (Cn(A)) defined in (15) and (16)).

Definition 4.3. The Kac cohomology H(m.p., A) of the matched pair (m.p.)
G1, G2 ⊂ G with coefficients in the Polish G-module A is defined to be the co-
homology of the mapping cone of the natural cochain transformation J given by
(19).

We recall that, by definition, the mapping cone (Mn)n≥−1 of the cochain trans-
formation J is defined by the formula

Mn(A) = Dn+1(A) ⊕ Kn(A) and d(F, G) = (d F,− d G + JF ) .

We now explain how to complete the total bicomplex of (12) in order to obtain
the Kac cohomology.

Proposition 4.4. Define, for n ≥ 1, Cn(A) as in (15). Define C0(A) = A,
C−1(A) = 0. Define

d : C0(A) → C1(A) : (d a)
( s

gh

t

x
)

= x · a − s · a − h · a + a .
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This coboundary compiles with (16) to a cochain complex (Cn(A))n≥−1. The in-
clusions Cn(A) ↪→ Dn+1(A), together with the map

C0(A) → M0(A) = L(Γ10, A) ⊕ L(Γ01, A) ⊕ A ⊕ A : a 
→ dv a ⊕ dh a ⊕ a ⊕ a,

define a natural cochain transformation (Cn(A)) → (Mn(A)) which is a cohomology
isomorphism.

In particular, we conclude from Proposition 3.6 that the group of extensions of
the matched pair G1, G2 ⊂ G is precisely the Kac 2-cohomology H2(m.p., T) with
coefficients in the trivial G-module T.

Proof. For n ≥ 2, J : Dn(A) → Kn(A) is surjective, with kernel the image of
Cn−1(A). This shows that the cochain transformation (Cn(A)) → (Mn(A)) is an
isomorphism in n-cohomology for n ≥ 2. For n = 0, 1, the same follows by an
explicit verification. �

The mapping cone of a cochain transformation is made for getting long exact
sequences. So, the following is an immediate consequence of Proposition 4.1.

Corollary 4.5. The Kac cohomology H(m.p., A) of the matched pair G1, G2 ⊂ G
with coefficients in the Polish G-module A satisfies the long exact sequence

0 → AG → AG1 ⊕ AG2 → H0(m.p., A) → H1(G, A) → H1(G1, A) ⊕ H1(G2, A)

→ H1(m.p., A) → H2(G, A) → H2(G1, A) ⊕ H2(G2, A) → H2(m.p., A)

→ H3(G, A) → H3(G1, A) ⊕ H3(G2, A) → · · · .

Recall here that H2(m.p., T) is the group of extensions of the matched pair, by
Propositions 3.6 and 4.4.

Remark 4.6. Once we have, for a good class of locally compact groups G and
Polish G-modules A, a natural way to write a cochain complex (En(G, A)) whose
cohomology is the cohomology of G, we can expect that the Kac cohomology of a
matched pair G1, G2 ⊂ G is the cohomology of the mapping cone of the cochain
transformation (En(G, A))n → (En(G1, A) ⊕ En(G2, A))n. Concrete applications
of this principle can be found below (see Proposition 7.1).

If A is a Polish G-module, we define L(G, A) as a Polish G-module by writing
(x · F )(y) = x · F (x−1y) for F ∈ L(G, A) and x, y ∈ G. Sending a ∈ A to the
constant function a, we get an embedding A ↪→ L(G, A) of A as a closed submodule
of L(G, A). As a consequence of Corollary 4.5, we get the following result.

Corollary 4.7. If G1, G2 ⊂ G is a matched pair, then Hn(m.p., L(G, A)) = 0 for
all n ≥ 1 and all Polish G-modules A. In particular, the Kac cohomology satisfies
the Buchsbaum criterion.

Proof. Since the group cohomology with coefficients in L(G, A) vanishes, this is an
immediate consequence of the Kac exact sequence. �

It is now possible to interpret the Kac cohomology of the matched pair G1, G2 ⊂
G with coefficients in the Polish G-module A as an ordinary group cohomology
with coefficients in a well-chosen module.
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Corollary 4.8. Let G1, G2 ⊂ G be a matched pair and let A be a Polish G-module.
Then the Kac cohomology H(m.p., A) is the measurable group cohomology of G with
coefficients in the Polish G-module

L(G/G1 � G/G2, A)
A

.

Proof. By Proposition 4.4, the Kac cohomology is defined by the total bicomplex
of (L(Γpq, A))p,q≥1 completed with A ∼= L(Γ00, A) → L(Γ11, A) : a 
→ d(a) =
(dv

1 − dv
0)(d

h
1 − dh

0)a. Now consider the G-equivariant analogue, which is the total
bicomplex of (L(Υpq, A))p,q≥1 completed with L(Υ00, A) → L(Υ11, A) : F 
→ d F =
(dv

1 − dv
0)(d

h
1 − dh

0)F . Denote the complex obtained as such by (Rn).
We claim that
L(G/G1 � G/G2, A)

A

θ→ R0 → R1 → · · · where θ(H1 ⊕ H2) = H1 − H2

is a free resolution. The proof of this claim will complete the proof of the corollary.
By definition, each of the Polish G-modules Rn is free. Moreover, the ex-

actness of Rn−1 → Rn → Rn+1 for n ≥ 1 follows from Corollary 4.7, stat-
ing that Hn(m.p., L(G, A)) = 0. Also, θ is injective. If H1 ∈ L(G/G1, A) and
H2 ∈ L(G/G2, A) are such that θ(H1 ⊕ H2) = 0, then H1 = H2 = F , where
F ∈ L(G, A) is invariant under translations by both G1 and G2. Hence, F is a
constant function, proving the injectivity of θ.

We have to show that the kernel of d : L(Υ00, A) → L(Υ11, A) is the image of θ.
It is immediate that the image of θ is included in the kernel of d. Let F ∈ L(Υ00, A)
and dF = 0. This means that

F (xy) − F (xq2(y)) − F (xp1(y)) + F (x) = 0 for almost all (x, y) ∈ G × G .

Using the Fubini theorem, we fix x ∈ G such that the previous equation holds for
almost all y ∈ G. Define H1 ∈ L(G/G1, A) and H2 ∈ L(G/G2, A) by the formulas
H1(y) = F (xq2(y)) and H2(y) = F (x) − F (xp1(y)). Then, F = θ(H1 ⊕ H2). �

Remark 4.9. Observe that it is clear that for any Polish G-module A we have
H(G, L(G/Gi, A)) = H(Gi, A). Hence, the Kac exact sequence is exactly the long
exact cohomology sequence that corresponds to the exact sequence of Polish G-
modules

0 → A → L(G/G1 � G/G2, A) → L(G/G1 � G/G2, A)
A

→ 0 .

5. Pentagonal cohomology and isomorphism with Kac cohomology

In Definition 3.2 we defined the 2-cohomology group associated with a pentagonal
transformation. Recall (14), where we defined face operators dh

i : L(Γpq, A) →
L(Γp,q+1, A) and dv

j : L(Γpq, A) → L(Γp+1,q, A) for 0 ≤ i ≤ q + 1 and 0 ≤ j ≤ p + 1.
For convenience of notation, we write moreover dh

q+2 = dh
q+1 and dv

−1 = dv
0 on

L(Γpq , A). Define then, for n ≥ 1,

dpent : L(Γnn, A) → L(Γn+1,n+1, A) : dpent =
n+2∑
i=0

(−1)i dh
i dv

i−1 .

In Remark 4.2, we defined the measure class isomorphism Gn → Γnn. Using this,
we can identify the usual complex for the measurable cohomology of G with the
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complex defined by

dgroup : L(Γnn, A) → L(Γn+1,n+1, A) : dgroup =
n+1∑
i=0

(−1)i dh
i dv

i .

It is then clear that the injective map dh
n+1 dv

0 : L(Γnn, A) → L(Γn+1,n+1, A) inter-
twines dpent and dgroup. Hence, dpent turns En(A) := L(Γnn, A) for n ≥ 1 into a
cochain complex. Remark that the 2-cohomology of this complex is, by definition,
the 2-cohomology associated with the pentagonal transformation.

We can complete the cochain complex (En(A))n≥1, defining E0(A) = A ⊕ A
with

dpent : A ⊕ A → L(Γ11, A) : dpent(a, b) = d(a) + dh
0 dv

1(b) ,

where d : A → L(Γ11, A) is as in Proposition 4.4.

Definition 5.1. Given a matched pair G1, G2 ⊂ G, we define the pentagonal coho-
mology H(pent, A) with coefficients in the Polish G-module A as the cohomology
of the cochain complex (En(A))n≥0 defined above.

Recall the Kac cochain complex (Cn(A)) that we defined in (15) and Proposition
4.4. Using Remark 4.2 and the cochain transformation I ′ : Dn(A) → L(Gn, A) ∼=
L(Γnn, A) defined there, we get a cochain transformation T : Cn(A) → En(A),
which is defined such that for n ≥ 1, the diagram

Cn(A) −−−−→ Dn+1(A)

T

� �I′

En(A)
dh

n+1 dv
0−−−−−→ L(Γn+1,n+1, A) ∼= L(Gn+1, A)

commutes. For n = 0, we put T : C0(A) = A → A ⊕ A = E0(A) : a 
→ a ⊕ 0.
We prove now that T is a cohomology isomorphism. Hence, the pentagonal and

Kac cohomologies are isomorphic.

Proposition 5.2. Let G1, G2 ⊂ G be a matched pair. The cochain transformation
T is a cohomology isomorphism between Kac cohomology and pentagonal cohomol-
ogy.

Proof. As in (13), we can write equivariant face operators

dh
i : L(Υpq, A) → L(Υp,q+1, A) for 0 ≤ i ≤ q + 1 and

dv
j : L(Υpq, A) → L(Υp+1,q, A) for 0 ≤ j ≤ p + 1 .

For convenience of notation, we put moreover dh
q+2 = dh

q+1 and dv
−1 = dv

0 on
L(Υpq, A). Using this notation, we get the G-equivariant cochain complex (Pn(A))
such that for n ≥ 1, Pn(A) = L(Υnn, A) and

dpent : L(Υnn, A) → L(Υn+1,n+1, A) : dpent =
n+2∑
i=0

(−1)i dh
i dv

i−1 .

Also, write P 0 = L(Υ00, A) ⊕ L(Υ00, A) and

dpent : L(Υ00, A) ⊕ L(Υ00, A) → L(Υ11, A) :

dpent(α ⊕ β) = (dh
0 − dh

1)(dv
0 − dv

1)α + dh
0 dv

1 β .
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Then, the cochain complex (En(A)) of the pentagonal cohomology consists precisely
of the fixed points under G in (Pn(A)).

We now complete the above G-equivariant complex by L(G/G1 �G/G2,A)
A in order

to get a resolution. Using Corollary 4.8, it is sufficient to prove that

L(G/G1 � G/G2, A)
A

π→ P 0(A) → P 1(A) → · · · ,

with π(H1⊕H2) = (H1−H2)⊕0, is a free resolution of L(G/G1 � G/G2,A)
A . Indeed, we

then know that the pentagonal cohomology is isomorphic with the Kac cohomology
and that the natural cochain transformation T induces a cohomology isomorphism.

From the lemma following this proposition, we know that the sequence P 0(A) →
P 1(A) → · · · is exact. It remains to prove that if F⊕G ∈ P 0(A) and dF+dh

0 dv
1 G =

0, then F ⊕G belongs to the image of π. From the proof of Corollary 4.8, it follows
that it is sufficient to prove that G = 0. But, (dv

1 − dv
0)(d

h
1 − dh

0)F + dh
0 dv

1 G = 0.
Apply dh = dh

0 − dh
1 + dh

2 to both sides of this last equation. We find that 0 =
dh

2 dh
0 dv

1 G and hence, G = 0. �

Lemma 5.3. Let G1, G2 ⊂ G be a matched pair and let A be a Polish G-module.
The sequence

P 0(A) → P 1(A) → · · · ,

constructed in the proof of the previous proposition, is exact.

Proof. We temporarily consider some cohomology which is intermediate between
the pentagonal cohomology and the group cohomology of G. For n ≥ 0, we define

dtemp : L(Υn+1,n, A) → L(Υn+2,n+1, A) : dtemp =
n+2∑
i=0

(−1)i dh
i dv

i .

The injective maps

L(Υnn, A)
dv
0−→ L(Υn+1,n, A)

dh
n+1−→ L(Υn+1,n+1, A)

intertwine dpent, dtemp and dgroup for n ≥ 1.
Suppose n ≥ 1 and write dn

temp for a while. We identify L(Υn+2,n+1, A) with
L(G × Υn+1,n, A) through the identification of

(x, X) ∈ G × Υn+1,n with

x

X ∈ Υn+2,n+1

almost everywhere. Observe that (dn
temp F )(x, X) = F (X) − dn−1

temp

(
F (x, ·)

)
(X) for

almost all (x, X) ∈ G×Υn+1,n. Now if F ∈ L(Υn+1,n, A) and dn
temp F = 0, we take

a Borel measurable representative for F that we still denote by F . Then,

F (X) = dn−1
temp

(
F (x, ·)

)
(X) for almost all (x, X) ∈ G × Υn+1,n .

By the Fubini theorem, we can take an x ∈ G such that the previous equation holds
for almost all X ∈ Υn+1,n. So, we conclude that F is a coboundary.

As such, we did not only prove that the cohomology of dtemp is trivial, but we
also proved the following: if θ : A → B is a continuous G-equivariant homomor-
phism between the Polish G-modules A and B and if F ∈ L(Υn+1,n, A) such that
dtemp(θ(F )) = 0, then there exists K ∈ L(Υn,n−1, A) such that θ(F ) = θ(dtemp K).
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Consider

(20) dtemp : L(G1, A) → L(Υ10, A) : (dtemp F )
(

y

x )
= F (p1(x)) − F (p1(y)) .

Now if F ∈ L(Υ10, A) and dtemp F = 0, there exists K ∈ L(G1, A) such that
F = dtemp K. The same kind of statement involving θ : A → B as above also holds.

We now prove the exactness of the sequence P 0(A) → P 1(A) → · · · . Let n ≥
1 and α ∈ L(Υnn, A) such that dpent α = 0. Then, dv

0 α ∈ L(Υn+1,n, A) and
dtemp dv

0 α = 0. Using the results above, we can take β ∈ L(Υn,n−1, A) such that
dv

0 α = dtemp β.
Suppose now first that n ≥ 2. Applying dv

0 − dv
1 to both sides of this equation

yields

(21) 0 =
n+1∑
i=1

(−1)i dh
i dv

i+1(d
v
0 − dv

1)β .

We now use the identification of L(Υn+1,n−1, A) with L(Υn−1,n−2, L(Υ10, A)) by
identifying

(X, Y ) ∈ Υn−1,n−2 × Υ10 with
X

Y

∈ Υn+1,n−1

almost everywhere. We also identify L(Υn,n−1, A) with L(Υn−1,n−2, L(Υ00, A)) as
above. We consider θ := dv

0 − dv
1 : L(Υ00, A) → L(Υ10, A) as a morphism of Polish

modules. Using all these identifications, (21) becomes dtemp(θ(β)) = 0. From the
results in the beginning of the proof, we find γ ∈ L(Υn−2,n−3, L(Υ00, A)) such that
θ(β) = θ(dtemp γ). Re-identifying, we have found γ ∈ L(Υn−1,n−2, A) such that

(dv
0 − dv

1)β =
n∑

i=1

(−1)i dh
i dv

i+1(d
v
0 − dv

1)γ

and hence,
(dv

0 − dv
1)β = (dv

0 − dv
1) dtemp γ .

Observe that the argument works well for n = 2 by using (20).
Write β̃ = β − dtemp γ. Then dv

0 α = dtemp β = dtemp β̃ and moreover (dv
0 − dv

1)β̃
= 0. But then, there is a unique µ ∈ L(Υn−1,n−1, A) such that β̃ = dv

0 µ. We
conclude that dv

0 α = dtemp dv
0 µ = dv

0 dpent µ and hence, α = dpent µ.
Finally, consider the case n = 1. So, we have α ∈ L(Υ11, A) such that dpent α = 0.

The beginning of the argument above works well and we find β ∈ L(Υ10, A) such
that

dv
0 α = (dh

0 dv
0 − dh

1 dv
1 + dh

1 dv
2)β .

Apply dv
0 − dv

1 to both sides and conclude that dh
1(dv

0 − dv
1)(d

v
1 − dv

2)β = 0. Hence,
(dv

2 − dv
3)(d

v
0 − dv

1)β = 0. So, we can take γ ∈ L(Υ10, A) such that

(22) (dv
0 − dv

1)β = dv
2 γ .

It follows that dv β = dv
2(γ + β) and hence dv dv

2(γ + β) = 0. This can be rewritten
as dv

3(d
v
0 − dv

1)(γ + β) = 0 and hence, (dv
0 − dv

1)(γ + β) = 0. Combining this last
equation with (22), we find that dv γ = 0. It is by now easy to find µ ∈ L(Υ00, A)
such that γ = dv µ and hence, γ = (dv

0 − dv
1)µ. Write β̃ = β − dv

1 µ. Then,

(dv
0 − dv

1)β̃ = (dv
0 − dv

1)(β + γ) − (dv
0 − dv

1)(γ + dv
1 µ) = 0 − (dv

0 − dv
1) dv

0 µ = 0 .
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So, we can take η ∈ L(Υ00, A) such that β̃ = dv
0 η. Finally,

dtemp β̃ = dtemp β − (dh
0 dv

0 − dh
1(dv

1 − dv
2)) dv

1 µ = dv
0(α − dh

0 dv
1 µ) .

Hence,
(dh

0 dv
0 − dh

1 dv
0 + dh

1 dv
1)(η) = α − dh

0 dv
1 µ

and so, α = d(η) + dh
0 dv

1(η + µ) = dpent(η ⊕ (η + µ)). �

6. Interpretation of 1-cohomology

Fix a matched pair G1, G2 ⊂ G. We give a natural interpretation of the Kac
1-cohomology H1(m.p., T) with coefficients in the trivial G-module T.

As we explained in Subsection 3.1, the elements of H2(m.p., T) can be interpreted
as extensions (M, ∆)

e −→ (L∞(G1), ∆1) −→ (M, ∆) −→ (L(G2), ∆̂2) −→ e

in the category of locally compact quantum groups. In particular, the element
0 ∈ H2(m.p., T) gives rise to an extension (M, ∆) that we describe explicitly as
follows. It is called the bicrossed product of G1, G2.

The von Neumann algebra M is the crossed product M = G2 � L∞(G/G2) that
we realize explicitly as follows. Identifying L∞(G/G2) with L∞(G1), we consider
the Hilbert space H = L2(G2 × G1) and write

π1 : L∞(G1) → B(H) : (π1(F )ξ)(s, g) = F (p1(sg))ξ(s, g) ,

λ : L(G2) → B(H) : λ(a) = a ⊗ 1 .

The von Neumann algebra M is generated by π1(L∞(G1)) and λ(L(G2)) in B(H).
The coproduct ∆ : M → M ⊗ M on M is then given by

∆π1 = (π1 ⊗ π1)∆1, where ∆1(F )(g, h) = F (gh) for all g, h ∈ G1 ,

∆(λs ⊗ 1) =
(
(λs ⊗ 1 ⊗ 1)(π1 ⊗ ι)(Xs)

)
⊗ 1,

where Xs ∈ L∞(G1) ⊗ L(G2) is given by Xs(g) = λp2(sg) .

Since M is a crossed product, there is a dual coaction

θ : M → L(G2) ⊗ M :

{
θ(π1(F )) = 1 ⊗ π1(F ) ,

θ(λs ⊗ 1) = λs ⊗ (λs ⊗ 1) .

If we write somehow formally the morphism π2 : M → L(G2), we can consider that
θ = (π2 ⊗ ι)∆. This is explained in detail after Proposition 3.1 in [23].

Definition 6.1. A (left) coideal I of a locally compact quantum group (M, ∆) is
a von Neumann subalgebra I ⊂ M satisfying ∆(I) ⊂ M ⊗ I.

We only work with left coideals, and so we leave out ‘left’ from now on. We shall
give a bijective correspondence between the Kac 1-cohomology H1(m.p., T) and a
special class of coideals in the bicrossed product (M, ∆). If I is a coideal, then
θ(I) ⊂ L(G2) ⊗ I. So, (L(G2), ∆̂2) coacts on I. As such, I is a L(G2)-comodule.

Definition 6.2. We say that a coideal I of the bicrossed product (M, ∆) is full, if
for every s ∈ G2,

Es := {x ∈ I | θ(x) = λs ⊗ x}
is a one-dimensional subspace of I.
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We then have the following result.

Proposition 6.3. Let I be a coideal of (M, ∆). Then, the following are equivalent:

(1) I is full.
(2) There exists an isomorphism µ : L(G2) → I of von Neumann algebras

satisfying (ι ⊗ µ)∆̂2 = θµ.
(3) There exists an R ∈ H1(m.p., T) such that

I = R(L(G2) ⊗ 1)R∗ ,

where we consider R : G2 × G1 → T as a unitary multiplication operator
on L2(G2 × G1).

Moreover, the correspondence R 
→ R(L(G2) ⊗ 1)R∗ defines a bijection between
H1(m.p., T) and the set of full coideals of the bicrossed product (M, ∆).

Proof. Recall that H1(m.p., T) consists of the functions R ∈ L(G2 × G1, T) such
that

R(p2(sg), h) R(s, gh) R(s, g) = 1 and R(t, g) R(st, g) R(s, p1(tg)) = 1

for almost all (s, t, g, h) ∈ G2
2 × G2

1.
Let R be such a function and consider R as a unitary (multiplication) operator

on L2(G2 × G1). Define

(23) I = R(L(G2) ⊗ 1)R∗ .

Observe that I is a von Neumann algebra generated by R(λs ⊗ 1)R∗ for s ∈ G2.
Using the second equation satisfied by R, one gets

R(λs ⊗ 1)R∗ = (λs ⊗ 1)π1(R(s, ·)) .

Hence I is a von Neumann subalgebra of M . Using the first relation satisfied by
R, one verifies immediately that I is a coideal of (M, ∆). We also observe that
µ : L(G2) → I : µ(a) = R(a ⊗ 1)R∗ defines an isomorphism of von Neumann
algebras satisfying (ι⊗ µ)∆̂2 = θµ. Hence, Es = µ(C λs) and I is full. So, we have
proven that there is a map from H1(m.p., T) to the set of coideals satisfying all
three conditions in the statement of the proposition.

We prove that this map is injective. For this, it is sufficient to prove that,
whenever R ∈ H1(m.p., T) and R(L(G2)⊗ 1)R∗ = L(G2)⊗ 1, then R = 1. In that
case, (λs ⊗ 1)π1(R(s, ·)) ∈ L(G2)⊗ 1 for all s ∈ G2. Hence, π1(R(s, ·)) ∈ C and we
find a function V : G2 → T such that R(s, g) = V(s) for almost all (s, g) ∈ G2×G1.
Considering R ∈ L(Γ11, T) and V ∈ L(Γ01, T), this means that R = dv

1 V . Then,
shifting to additive notation

0 = dv R = (dv
0 − dv

1 + dv
2) dv

1 V = dv
0 dv

1 V .

This implies that V is trivial and hence R = 0 in H1(m.p., T).
Suppose next that I is a full coideal in the bicrossed product (M, ∆). We shall

produce an element in H1(m.p., T) such that I is given by (23). Hence, I will also
satisfy the second statement of the proposition.

We claim that there exists a Borel measurable map Y : G2 → U(I) such that
θ(Y (s)) = λs ⊗ Y (s). Here, U(I) denotes the unitary group of I equipped with the
strong topology. As such, U(I) is a Polish group. Let s ∈ G2 and x ∈ Es. Then,
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x∗x, xx∗ ∈ Ee. Further, C 1 ⊂ Ee implying that Ee = C 1. This means that Es is
of the form C u, with u a unitary in I. Define the Polish group K ⊂ G2 × U(I) as

K = {(s, u) ∈ G2 × U(I) | θ(u) = λs ⊗ u} .

Define π : K → G2 : π(s, u) = s. Then, π is continuous and surjective. It follows
that there exists a Borel section G2 → K, and this proves our claim.

Denote by Mθ the subalgebra of M consisting of x ∈ M satisfying θ(x) = 1⊗ x.
Observe that, since θ is the dual coaction on the crossed product G2 � L∞(G1), we
get that Mθ = π1(L∞(G1)). For any s ∈ G2, (λ∗

s ⊗ 1)Y (s) ∈ Mθ. Hence, we can
take R : G2 × G1 → T Borel measurable such that Y (s) = (λs ⊗ 1)π1(R(s, ·)) for
all s ∈ G2.

Since I is a von Neumann algebra, we have Y (st)∗Y (s)Y (t) ∈ I ∩ Mθ = C. It
follows that there is a measurable function V : G2 × G1 → T such that

R(st, g) R(s, p1(tg)) R(t, g) = V(s, t)

almost everywhere. Considering R ∈ L(Γ11, T) and V ∈ L(Γ02, T), this equation
can be rewritten as dh R = dv

1 V .
On the other hand, ∆(I) ⊂ M ⊗ I and

∆(Y (s)) =
((

(λs ⊗ 1 ⊗ 1)(π1 ⊗ ι)(Xs)
)
⊗ 1

)
(π1 ⊗ π1)∆1

(
R(s, ·)

)
.

Hence, we find that
(λp2(sg) ⊗ 1)π1

(
R(s, g · )

)
∈ I

for almost all s, g. But also Y (p2(sg)) = (λp2(sg)⊗1)π1

(
R(p2(sg), ·)

)
∈ I. It follows

that we can take a measurable function U : G2 × G1 → T such that

R(p2(sg), h) R(s, gh) R(s, g) = U(s, g)

almost everywhere. Considering R,U ∈ L(Γ11, T), this equation can be rewritten
as dv R = dv

2 U .
We shift back to additive notation. From the equation dv R = dv

2 U , it follows
that (dv

0 − dv
1 + dv

2 − dv
3) dv

2 U = dv dv
2 U = 0, which yields that dv

3(d
v
0 − dv

1)U = 0.
Hence, (dv

0 − dv
1)U = 0 and we can take W ∈ L(Γ01, T) such that U = dv

0 W . We
then find that

dv
2 dv

0 dh W = dh dv
2 U = dh dv R = dv dh R = dv dv

1 V
= (dv

0 − dv
1 + dv

2) dv
1 V = dv

0 dv
1 V = dv

2 dv
0 V .

Hence, V = dh W . Define R̃ = R− dv
1 W . Then, dh R̃ = 0 as well as dv R̃ = 0. So,

R̃ ∈ H1(m.p., T). Moreover, the coideal defined by R̃ is generated by the operators

(λs ⊗ 1)π1(R̃(s, ·)) = W(s) (λs ⊗ 1)π1(R(s, ·)) = W(s)Y (s) ∈ I .

Writing Z(s) = R̃(λs ⊗ 1)R̃∗ ∈ I, we get a strongly continuous homomorphism
s 
→ Z(s) satisfying θ(Z(s)) = λs ⊗ Z(s). From Landstad’s theorem (see [16]), it
follows that I is a crossed product von Neumann algebra and, in particular, that I
is generated by Iθ and {Z(s) | s ∈ G2}. Now, Iθ = Ee = C and we conclude that
the coideal defined by R̃ is precisely I. �

Remark 6.4. In the previous proposition we described the full coideals of (M, ∆)
in terms of H1(m.p., T). There is no hope to describe all coideals of (M, ∆) using
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cohomological data. This would come down to describe, in the classical setting, all
closed subgroups of G in terms of G1 and G2 if

e −→ G1 −→ G −→ G2 −→ e

is an exact sequence. It is clear that we can only describe in such a way a closed
subgroup of G whose image in G2 is closed.

In the previous proposition, we characterized in a quantum setting the closed
subgroups H of G such that the homomorphism from H to G2 is in fact a bijec-
tive homeomorphism. More generally, it is possible to describe the coideals of the
bicrossed product (M, ∆) whose image in L(G2) is, in a certain sense, closed.

7. Computational methods

Let G1, G2 ⊂ G be a matched pair of locally compact groups. We want to
calculate the group of extensions H2(m.p., T). Taking into account the Kac exact
sequence (Corollary 4.5), we have to calculate Hn(Γ, T), for n = 2, 3 and Γ =
G, G1, G2. David Wigner developed in [25] the necessary tools.

Let G be a locally compact group. The short exact sequence 0 → Z → R →
T → 0 yields the long exact cohomology sequence

· · · → Hn(G, Z) → Hn(G, R) → Hn(G, T) → Hn+1(G, Z) → · · · .

So, we have to calculate Hn(G, R) and Hn(G, Z).
In order to do so, we explain the approach of David Wigner. We introduce a

special class of Polish Z-modules having property F, which means that for every
short exact sequence 0 → A → B

π→ C → 0, π has the homotopy lifting property
for finite-dimensional paracompact spaces.

We consider Hn(G, A) for
• locally compact, σ-compact groups G of finite dimension (in the sense of

Lebesgue covering dimension),
• Polish G-modules A with property F.

In such a situation, we define on the locally compact space Gn the sheaf An of
continuous functions to A, i.e. An(U) = {f : U → A | f continuous} for all
U ⊂ Gn open. Since the usual face operators ∂i : Gn → Gn−1, i = 0, . . . , n, are
continuous, we get a bicomplex (Ck(Gn,An))k,n≥0:

(24)

...
...

dv

� dv

�
C1(G0,A0) dh

−−−−→ C1(G1,A1) dh

−−−−→ · · ·

dv

� dv

�
C0(G0,A0) dh

−−−−→ C0(G1,A1) dh

−−−−→ · · ·
Here, Ck(Gn,An) denotes the semisimplicial k-cochains of sheaf cohomology (see
[6], Chapter II, end of Section 2), dv is the coboundary of sheaf cohomology and
dh is the coboundary of group cohomology. Wigner shows that the cohomology of
the total bicomplex is precisely H(G, A).

One can write an explicit isomorphism as follows: define An
Borel to be the sheaf

on Gn defined by An(U) = {f : U → A | f Borel measurable} for all U ⊂ Gn
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open. We get a bicomplex (Ck(Gn,An
Borel)). Using the inclusion An ↪→ An

Borel we
get a cochain transformation (Ck(Gn,An)) → (Ck(Gn,An

Borel)) which is a total
cohomology isomorphism. Since the sheafs An

Borel are flabby, the total cohomology
of the second bicomplex is supported on the first row and gives precisely the Borel
cohomology of G, defined using the complex (FBorel(Gn, A))n.

Suppose now that A is contractible. Then, the sheafs An are flabby and the coho-
mology of the total bicomplex of (24) is supported on the first row. By definition, we
get that H(G, A) = Hcont(G, A). Suppose moreover that A is a finite-dimensional
vector space and that G is a Lie group with finitely many connected components.
Let K ⊂ G be a maximal compact subgroup. Using results of Hochschild & Mostow
and Van Est, we get that H(G, A) = Hcont(G, A) = H(g, K, A), the Lie algebra
cohomology relative to K as defined in [11], Chapitre II, no 3.6.

In our examples, we will look at A = R and G will be low dimensional, so that
H(g, K, A) is perfectly computable.

On the opposite suppose that A is a discrete G-module. Let EG → BG be a
principal universal G-bundle with paracompact base (see [12]). Let Bn denote the
sheaf of continuous (hence, locally constant) functions on EG × Gn, i.e. Bn(U) =
{f : U → A | f continuous} for all U ⊂ EG × Gn open. Define the face operators
∂h

i : EG × Gn → EG × Gn−1, i = 0, . . . , n, by the formula

∂h
i (x, g1, . . . , gn) =


(x · g1, g2, . . . , gn) if i = 0,

(x, g1, . . . , gigi+1, . . . , gn) if i = 1, . . . , n − 1,

(x, g1, . . . , gn−1) if i = n .

Proceeding as above, we get a bicomplex (Ck(EG × Gn,Bn))k,n≥0. Using the
projection EG × Gn → Gn we get a cochain transformation (Ck(Gn,An)) →
(Ck(EG × Gn,Bn)). Since EG is contractible and A discrete, the homotopy in-
variance of sheaf cohomology implies that this cochain transformation induces a
cohomology isomorphism in every column. Hence, we get an isomorphism in total
cohomology. Next (and this argument is slightly delicate; see page 92 in Wigner’s
paper [25]), we can use local sections for the map EG → BG to show that the total
cohomology of the bicomplex (Ck(EG×Gn,Bn)) is supported on the first column.
As a conclusion, we get that H(G, A) is precisely the sheaf cohomology of BG with
coefficients in the locally constant sheaf A on BG.

As an application, we have the following result.

Proposition 7.1. Let G1, G2 ⊂ G be a matched pair and suppose that G is finite
dimensional. Let EG → BG be a principal universal G-bundle with paracompact
base. We get principal universal Gi-bundles EG → BGi and continuous maps
BGi → BG. The Kac cohomology H(m.p., A) with coefficients in a discrete, trivial
G-module A is the singular cohomology of the mapping cone of BG1 �BG2 → BG
with coefficients in A.

Proof. Denote, on all kinds of spaces, the constant sheaf A by A and the sheaf
of Borel functions to A by ABorel. Consider the diagram (25) below. The arrows
labeled with (1) are defined by (18). The arrows labeled with (2) are the obvi-
ous ones. Both are cohomology isomorphisms by the Buchsbaum’s criterion (see
Preliminaries). The arrows labeled with (3) are cohomology isomorphisms by ho-
motopy invariance of sheaf cohomology, as explained above. Finally, the arrows
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(25)
(L(Γpq, A))p+q=n −−−−→ (L(Gn

1 , A) ⊕ L(Gn
2 , A))n

(1)

� �(1)

(FBorel(Gn, A))n −−−−→ (FBorel(Gn
1 , A) ⊕FBorel(Gn

2 , A))n

(2)

� �(2)

(Cp(Gq ,ABorel))p+q=n −−−−→ (Cp(Gq
1,ABorel) ⊕ Cp(Gq

2,ABorel))p+q=n

(2)

� �(2)

(Cp(Gq ,A))p+q=n −−−−→ (Cp(Gq
1,A) ⊕ Cp(Gq

2,A))p+q=n

(3)

� �(3)

(Cp(EG × Gq,A))p+q=n −−−−→ (Cp(EG × Gq
1,A) ⊕ Cp(EG × Gq

2,A))p+q=n

(4)

� �(4)

(Cn(BG,A))n −−−−→ (Cn(BG1 � BG2,A))n

Figure 1. Diagram for the proof of Proposition 7.1

labeled with (4) are cohomology isomorphisms by Wigner’s argument on page 92
of [25].

The cohomology of the mapping cone of the cochain transformation on the first
line of the diagram in Figure 1 is by definition the Kac cohomology H(m.p., A).
The cohomology of the mapping cone of the cochain transformation on the last
line of the diagram is precisely the singular cohomology of the mapping cone of
BG1�BG2 → BG with coefficients in A. So, both cohomologies are isomorphic. �

8. Examples

8.1. Matched pairs of low-dimensional Lie groups. In [24], matched pairs of
real Lie algebras g1, g2 ⊂ g have been classified for dim g1 ≤ 2 and g2 = R. All
these matched pairs have exponentiations to matched pairs of Lie groups, in the
sense of Definition 2.1. The exponentiations that are as connected as possible (but
not always connected) have been given explicitly in [24]. The group of extensions
was calculated on the Lie algebra level and explicit exponentiations to cocycles
satisfying (5) have been given. Nevertheless, there were not the necessary tools at
hand to prove that these cocycles really represented exactly the elements of the
group of extensions in the sense of Definition 3.1.

Using the methods developed above, we will correctly compute the groups of
extensions for the matched pairs of [24], Theorem 5.1.

Remark that if G1, G2 and G are connected and have no non-trivial compact
subgroups, all cohomologies with coefficients in Z vanish and those with coefficients
in R reduce to Lie algebra cohomology. So, the group of extensions H2(m.p., T) is
isomorphic to the group of Lie bialgebra extensions for the matched pair g1, g2 ⊂ g,
as defined in [20]. In particular, the group of extensions for the cases 1 – 3 of [24],
Theorem 5.1, are either R or 0, as described in [24], Proposition 6.2.
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Next, we have to look at case 4 of [24], Theorem 5.1. A first class of matched
pairs depends on a parameter d �∈ {0, 1}. We have

G =
{s 0 x

0 sd y
0 0 1

∣∣∣ s �= 0, x, y ∈ R

}
where sd = Sgn(s) |s|d ,

G1 =
{s 0 0

0 sd y
0 0 1

 ∣∣∣ s �= 0, y ∈ R

}
, G2 =

{s 0 s − 1
0 sd 0
0 0 1

 ∣∣∣ s �= 0
}

.

Using the results of Section 7, we get that H2(G1, T) = H2(G2, T) = 0, that
H3(G1, R) = H3(G2, R) = 0 and that the arrow H4(G, Z) → H4(G1, Z) is an
isomorphism. Further, we have

H3(G, R) =

{
R if d = −1 ,

0 otherwise .

All this information, together with the Kac exact sequence, shows that the group
of extensions is R for d = −1 and 0 otherwise. An immediate verification shows
that, for the case d = −1, the cocycles are exactly given by Proposition 6.3 in [24].

A second class of matched pairs depends on a parameter b ∈ R. We have

G =
{s bs log |s| x

0 s y
0 0 1

 ∣∣∣ s �= 0, x, y ∈ R

}
,

G1 =
{s bs log |s| x

0 s 0
0 0 1

 ∣∣∣ s �= 0, x ∈ R

}
,

G2 =
{s bs log |s| 0

0 s s − 1
0 0 1

∣∣∣ s �= 0
}

.

With exactly the same reasoning as above, we find that the group of extensions is
trivial, since now H3(G, R) = 0.

Finally, consider three more interesting cases. Before writing the correspond-
ing Lie groups G1, G2 ⊂ G, we compute and write generators for H4(T, Z) and
H4(Z/2Z � T, Z), where Z/2Z acts by taking the inverse. It is well known that
BT = PC∞, the infinite-dimensional projective plane. Under the cup product
H(PC∞, Z) = Z[X ], the polynomial ring over Z. In particular, if x is a generator
for H2(PC

∞, Z), x ∪ x will be a generator for H4(PC
∞, Z). Also the measurable

cohomology H(G, Z) has a cup product: if α ∈ L(Gn, Z) and β ∈ L(Gm, Z) are
cocycles, we define

(α ∪ β)(g1, . . . , gn+m) = α(g1, . . . , gn)β(gn+1, . . . , gn+m) .

One can verify that the isomorphism H(G, Z) ∼= H(BG, Z) preserves cup products.
We conclude that, if ω is a generator for H2(G, Z) ∼= Z, then ω ∪ ω is a generator
for H4(G, Z). But, a generator ω for H2(T, Z) is well known, since it comes from
the extension 0 → Z → R → T → 0. We make the following choice that will be
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useful later:

for − π ≤ s, t < π , we define ω(exp(it), exp(is)) =


1 if s + t ≥ π ,

0 if − π ≤ s + t < π ,

−1 if s + t < −π .

An explicit generator for H4(T, Z) is then given by

(26) α(λ1, λ2, λ3, λ4) = ω(λ1, λ2)ω(λ3, λ4) .

We turn next to Z/2Z � T. Consider more generally a semi-direct product G :=
Γ�K, with Γ discrete. Using the subgroups Γ and K, we have a matched pair and
hence, we have the bicomplex (17) to compute the measurable cohomology H(G, A).
Associated with this bicomplex is a spectral sequence (the Lyndon-Hochschild-
Serre spectral sequence), which makes perfect sense because Γ is discrete. We have
E2

p,q = Hp(Γ, Hq(K, A)), where we consider Hq(K, A) as a discrete Γ-module. In
our concrete case, with Γ = Z/2Z and K = T, we find E4,0

2 = Z/2Z, E3,1
2 = E2,2

2 =
E1,3

2 = 0 and E0,4
2 = Z. Since the action of Z/2Z is trivial on the element α ∈

L(T4, Z), we can conclude that H4(Z/2Z � T, Z) ∼= Z/2Z⊕Z and more specifically,
the restriction homomorphism H4(Z/2Z � T, Z) → H4(Z/2Z, Z) ⊕ H4(T, Z) is an
isomorphism.

Consider the following matched pair:

G = {X ∈ M2(R) | detX = ±1} mod {±1} ,

G1 =
{(

|a| 0
x 1

a

) ∣∣∣ a �= 0, x ∈ R

}
mod {±1} ,

G2 =
{(

|s| 1
2 (|s| − 1

s )
0 1

s

) ∣∣∣ s �= 0
}

mod {±1} .

We get that H3(G, R) = 0 and H2(G1, T) = H2(G2, T) = 0. We can then
easily conclude from the Kac exact sequence that the sequence 0 → H2(m.p., T) →
H4(G, Z) → H4(G1, Z)⊕H4(G2, Z) is exact. Consider in the obvious way Z/2Z ⊂
G1 and Z/2Z ⊂ G2. Both embeddings of Z/2Z in G are conjugate in G. Since
conjugation by an element of G acts trivially on H4(G, Z), we conclude that the
sequence 0 → H2(m.p., T) → H4(G, Z) → H4(G1, Z) is exact. Using the maximal
compact subgroup Z/2Z � T ⊂ G, it follows from this that 0 → H2(m.p., T) →
H4(Z/2Z � T, Z) → H4(Z/2Z, Z) is exact. From the remarks above, we conclude
that H2(m.p., T) → H4(T, Z) is an isomorphism. Hence, the group of extensions
is H2(m.p., T) = Z. In [24], Proposition 6.3, explicit pairs of 2-cocycles (Un, 1)n∈Z

have been constructed for the matched pair G1, G2 ⊂ G. Using Remark 4.2 and
the final formula on page 171 as well as the first formula on page 172 of [24], we can
check that the image of (Un, 1) under the isomorphism H2(m.p., T) → H4(T, Z) is
precisely −4nα, where α is defined by (26). Once one is able to perform such a
calculation, one can see as well how to change the function f in [24] in order to get
exactly the whole of H2(m.p., T).

Next, consider the matched pair with

G = PSL2(R) , G1 =
{(

a x
0 1

a

)∣∣∣ a > 0, x ∈ R

}
mod {±1} ,

G2 =
{(

1 0
s 1

) ∣∣∣ s ∈ R

}
mod {±1} .
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Considering the maximal compact subgroup T ⊂ G, we immediately get that
H2(m.p., T) → H4(T, Z) is an isomorphism. The explicit cocycles (Un, 1) found
in [24] are mapped to 2nα under this isomorphism. Again, it is not hard to find
explicit formulas for cocycles giving exactly the whole of H2(m.p., T).

Finally, we look at the matched pair

G = PSL2(R) , G1 =
{(

a x
0 1

a

) ∣∣∣ a > 0, x ∈ R

}
mod {±1} ,

G2 =
{(

cos t sin t
− sin t cos t

) ∣∣∣ t ∈ R

}
mod {±1} .

From the Kac exact sequence, it follows that the sequence 0 → H2(m.p., T) →
H4(G, Z) → H4(G2, Z) is exact. Since H4(G, Z) → H4(G2, Z) is an isomorphism,
we get H2(m.p., T) = 0. This explains why it is impossible in [24] to exponentiate
the cocycles from the Lie algebra to the Lie group level.

In the final matched pair above, we can take the associated matched pair of Lie
algebras g1, g2 ⊂ g. If we take G̃ to be the connected, simply connected Lie group
with Lie algebra g and G̃1, G̃2 to be the connected Lie subgroups with Lie algebras
g1, g2, we get a matched pair such that G̃, G̃1, G̃2 are connected and without com-
pact subgroups. So, we conclude as above that H2(m.p., T) is isomorphic to the
group of Lie bialgebra extensions, i.e. R as stated in Proposition 6.2 of [24].

8.2. Some other examples. Let G be a semi-simple Lie group with finite center,
such that in its Iwasawa decomposition G = KAN , K is a maximal compact
subgroup. Writing G1 = K and G2 = AN , we get a matched pair of Lie groups.
Since G2 is contractible, we get that Hn(G2, Z) = 0 and Hn(G, Z) → Hn(G1, Z)
is an isomorphism for all n ≥ 1. It follows from the Kac exact sequence that
Hn(m.p., Z) = 0 for n ≥ 1. Hence, Hn(m.p., R) → Hn(m.p., T) is an isomorphism.
But,

H2(G, R) → H2(G1, R) ⊕ H2(G2, R) → H2(m.p., R)

→ H3(G, R) → H3(G1, R) ⊕ H3(G2, R)

is an exact sequence of vector spaces. Moreover, Hn(G1, R) = 0 for n ≥ 1. Writing
s = a ⊕ n for the Lie algebra of G2 and k for the Lie algebra of K, it follows that
the group of extensions is isomorphic with

H2(m.p., T) ∼= Coker
(
H2(g, k, R) → H2(s, R)

)
⊕ Ker

(
H3(g, k, R) → H3(s, R)

)
.

If we take G = SL2(R), we immediately get that the group of extensions is triv-
ial. For G = SL2(C), a direct calculation gives H2(s, R) = H3(s, R) = 0, while
H3(g, k, R) = R. So, in this case H2(m.p., T) = R. Observe that we deal precisely
with the matched pair considered by Majid in [18].

In [5], a class of matched pairs is constructed as follows: let A be a locally
compact ring such that A \ A� has (additive) Haar measure zero, where A� is the
group of units. Let G be the group of affine transformations of A, i.e. the locally
compact group with underlying space A�×A and product (a, x)·(b, y) = (ab, x+ay).
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The subgroups G1, G2 will be the subgroups of transformations fixing 0 and −1,
respectively. This means that G1 and G2 consist of the elements (a, 0) and (b, b−1)
for a, b ∈ A�.

If we take A = R, we easily get that H2(m.p., T) = 0. If A = C, we observe that
in the commutative diagram

H3(G, T) −−−−→ H3(G1, T)� �
H3(T, Z) −−−−→ H3(T, Z)

the vertical arrows and the lower horizontal arrow are isomorphisms. Since H2(G1, T)
= H2(G2, T) = 0, we can conclude that H2(m.p., T) = 0.
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Laboratoire de Mathématiques Pures, Université Blaise Pascal, Bâtiment de Mathé-
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