From $\Gamma$-spaces to algebraic theories
HTML articles powered by AMS MathViewer
- by Bernard Badzioch
- Trans. Amer. Math. Soc. 357 (2005), 1779-1799
- DOI: https://doi.org/10.1090/S0002-9947-04-03711-0
- Published electronically: December 16, 2004
- PDF | Request permission
Abstract:
The paper examines semi-theories, that is, formalisms of the type of the $\Gamma$-spaces of Segal which describe homotopy structures on topological spaces. It is shown that for any semi-theory one can find an algebraic theory describing the same structure on spaces as the original semi-theory. As a consequence one obtains a criterion for establishing when two semi-theories describe equivalent homotopy structures.References
- Bernard Badzioch, Algebraic theories in homotopy theory, Ann. of Math. (2) 155 (2002), no. 3, 895–913. MR 1923968, DOI 10.2307/3062135
- Bernard Badzioch, Recognition principle for generalized Eilenberg-Mac Lane spaces, Cohomological methods in homotopy theory (Bellaterra, 1998) Progr. Math., vol. 196, Birkhäuser, Basel, 2001, pp. 21–26. MR 1851244
- F. Borceux Handbook of categorical algebra, vol.2, Encyclopedia of Mathematics and its Applications vol. 51, Cambridge University Press, 1994.
- A. K. Bousfield The simplicial homotopy theory of iterated loop spaces, manuscript, 1992.
- W. G. Dwyer and D. M. Kan, Equivalences between homotopy theories of diagrams, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 180–205. MR 921478
- W. G. Dwyer and D. M. Kan, Function complexes in homotopical algebra, Topology 19 (1980), no. 4, 427–440. MR 584566, DOI 10.1016/0040-9383(80)90025-7
- W. G. Dwyer and D. M. Kan, Simplicial localizations of categories, J. Pure Appl. Algebra 17 (1980), no. 3, 267–284. MR 579087, DOI 10.1016/0022-4049(80)90049-3
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612, DOI 10.1007/978-3-0348-8707-6
- Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR 1944041, DOI 10.1090/surv/099
- F. William Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869–872. MR 158921, DOI 10.1073/pnas.50.5.869
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- Charles Rezk, Every homotopy theory of simplicial algebras admits a proper model, Topology Appl. 119 (2002), no. 1, 65–94. MR 1881711, DOI 10.1016/S0166-8641(01)00057-8
- Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312. MR 353298, DOI 10.1016/0040-9383(74)90022-6
- Stefan Schwede, Stable homotopy of algebraic theories, Topology 40 (2001), no. 1, 1–41. MR 1791267, DOI 10.1016/S0040-9383(99)00046-4
Bibliographic Information
- Bernard Badzioch
- Affiliation: Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- Address at time of publication: Department of Mathematics, University of Buffalo, SUNY, Buffalo, New York 14260-2900
- Email: badzioch@math.umn.edu, badzioch@buffalo.edu
- Received by editor(s): June 11, 2003
- Published electronically: December 16, 2004
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 357 (2005), 1779-1799
- MSC (2000): Primary 55P48; Secondary 18C10
- DOI: https://doi.org/10.1090/S0002-9947-04-03711-0
- MathSciNet review: 2115076