Duality and uniqueness of convex solutions to stationary Hamilton-Jacobi equations
HTML articles powered by AMS MathViewer
- by Rafal Goebel
- Trans. Amer. Math. Soc. 357 (2005), 2187-2203
- DOI: https://doi.org/10.1090/S0002-9947-05-03817-1
- Published electronically: January 21, 2005
- PDF | Request permission
Abstract:
Value functions for convex optimal control problems on infinite time intervals are studied in the framework of duality. Hamilton-Jacobi characterizations and the conjugacy of primal and dual value functions are of main interest. Close ties between the uniqueness of convex solutions to a Hamilton-Jacobi equation, the uniqueness of such solutions to a dual Hamilton-Jacobi equation, and the conjugacy of primal and dual value functions are displayed. Simultaneous approximation of primal and dual infinite horizon problems with a pair of dual problems on finite horizon, for which the value functions are conjugate, leads to sufficient conditions on the conjugacy of the infinite time horizon value functions. Consequently, uniqueness results for the Hamilton-Jacobi equation are established. Little regularity is assumed on the cost functions in the control problems, correspondingly, the Hamiltonians need not display any strict convexity and may have several saddle points.References
- Martino Bardi and Italo Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. With appendices by Maurizio Falcone and Pierpaolo Soravia. MR 1484411, DOI 10.1007/978-0-8176-4755-1
- L. M. Benveniste and J. A. Scheinkman, Duality theory for dynamic optimization models of economics: the continuous time case, J. Econom. Theory 27 (1982), no. 1, 1–19. MR 662928, DOI 10.1016/0022-0531(82)90012-6
- G. Di Blasio, Optimal control with infinite horizon for distributed parameter systems with constrained controls, SIAM J. Control Optim. 29 (1991), no. 4, 909–925. MR 1111667, DOI 10.1137/0329050
- P. Cannarsa and G. Da Prato, Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations, SIAM J. Control Optim. 27 (1989), no. 4, 861–875. MR 1001924, DOI 10.1137/0327046
- D.A. Carlson, A. Haurie, and A. Leizarowitz. Infinite Horizon Optimal Control: Deterministic and Stochastic Systems. Springer-Verlag, 1991.
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- Halina Frankowska, Optimal trajectories associated with a solution of the contingent Hamilton-Jacobi equation, Appl. Math. Optim. 19 (1989), no. 3, 291–311. MR 974188, DOI 10.1007/BF01448202
- Grant N. Galbraith, Extended Hamilton-Jacobi characterization of value functions in optimal control, SIAM J. Control Optim. 39 (2000), no. 1, 281–305. MR 1780920, DOI 10.1137/S0363012998347882
- R. Goebel. Convex optimal control problems with smooth Hamiltonians. SIAM J. Control Optim. in press.
- Rafal Goebel, Planar generalized Hamiltonian systems with large saddle sets, J. Nonlinear Convex Anal. 3 (2002), no. 3, 365–380. MR 1947105
- Rafal Goebel, Stationary Hamilton-Jacobi equations for convex control problems: uniqueness and duality of solutions, Optimal control, stabilization and nonsmooth analysis, Lect. Notes Control Inf. Sci., vol. 301, Springer, Berlin, 2004, pp. 313–322. MR 2079692, DOI 10.1007/978-3-540-39983-4_{2}0
- R. Goebel. Stabilizing a linear systems with saturation through optimal control. In Proceedings of the 43rd IEEE Conference on Decision and Control, Bahamas, 2004.
- Rafal Goebel and R. T. Rockafellar, Generalized conjugacy in Hamiltonian-Jacobi theory for fully convex Lagrangians, J. Convex Anal. 9 (2002), no. 2, 463–473. Special issue on optimization (Montpellier, 2000). MR 1970567
- R. Goebel, A. Teel, T. Hu, and Z. Lin. Dissipativity for dual linear differential inclusions through conjugate storage functions. In Proceedings of the 43rd IEEE Conference on Decision and Control, Bahamas, 2004.
- V. Iftode, Variational solutions of stationary Hamilton-Jacobi equations, Ital. J. Pure Appl. Math. 5 (1999), 117–123. MR 1736005
- Huibert Kwakernaak and Raphael Sivan, Linear optimal control systems, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1972. MR 0406607
- Arie Leizarowitz, Existence of overtaking optimal trajectories for problems with convex integrands, Math. Oper. Res. 10 (1985), no. 3, 450–461. MR 798390, DOI 10.1287/moor.10.3.450
- F. Da Lio, On the Bellman equation for infinite horizon problems with unbounded cost functional, Appl. Math. Optim. 41 (2000), no. 2, 171–197. MR 1731417, DOI 10.1007/s002459911010
- R. T. Rockafellar, Conjugate convex functions in optimal control and the calculus of variations, J. Math. Anal. Appl. 32 (1970), 174–222. MR 266020, DOI 10.1016/0022-247X(70)90324-0
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683, DOI 10.1515/9781400873173
- R. T. Rockafellar, Existence and duality theorems for convex problems of Bolza, Trans. Amer. Math. Soc. 159 (1971), 1–40. MR 282283, DOI 10.1090/S0002-9947-1971-0282283-0
- R. T. Rockafellar, Saddle points of Hamiltonian systems in convex problems of Lagrange, J. Optim. Theory Appl. 12 (1973), 367–390. MR 358516, DOI 10.1007/BF00940418
- R. T. Rockafellar, Hamiltonian trajectories and duality in the optimal control of linear systems with convex costs, SIAM J. Control Optim. 27 (1989), no. 5, 1007–1025. MR 1009335, DOI 10.1137/0327054
- R. Tyrrell Rockafellar and Roger J.-B. Wets, Variational analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer-Verlag, Berlin, 1998. MR 1491362, DOI 10.1007/978-3-642-02431-3
- R. Tyrrell Rockafellar and Peter R. Wolenski, Convexity in Hamilton-Jacobi theory. I. Dynamics and duality, SIAM J. Control Optim. 39 (2000), no. 5, 1323–1350. MR 1825581, DOI 10.1137/S0363012998345366
- Héctor J. Sussmann, Eduardo D. Sontag, and Yu Di Yang, A general result on the stabilization of linear systems using bounded controls, IEEE Trans. Automat. Control 39 (1994), no. 12, 2411–2425. MR 1337566, DOI 10.1109/9.362853
Bibliographic Information
- Rafal Goebel
- Affiliation: Center for Control Engineering and Computation, University of California, Santa Barbara, California 93106
- Address at time of publication: 3518 NE 42 St., Seattle, Washington 98105
- Email: rafal@ece.ucsb.edu
- Received by editor(s): April 3, 2003
- Published electronically: January 21, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 357 (2005), 2187-2203
- MSC (2000): Primary 49N15, 49L99; Secondary 49M29
- DOI: https://doi.org/10.1090/S0002-9947-05-03817-1
- MathSciNet review: 2140437