Finite dimensional representations of invariant differential operators
HTML articles powered by AMS MathViewer
- by Ian M. Musson and Sonia L. Rueda
- Trans. Amer. Math. Soc. 357 (2005), 2739-2752
- DOI: https://doi.org/10.1090/S0002-9947-04-03573-1
- Published electronically: July 22, 2004
- PDF | Request permission
Abstract:
Let $k$ be an algebraically closed field of characteristic $0$, $Y=k^{r}\times {(k^{\times })}^{s}$, and let $G$ be an algebraic torus acting diagonally on the ring of algebraic differential operators $\mathcal {D} (Y)$. We give necessary and sufficient conditions for $\mathcal {D}(Y)^G$ to have enough simple finite dimensional representations, in the sense that the intersection of the kernels of all the simple finite dimensional representations is zero. As an application we show that if $K\longrightarrow GL(V)$ is a representation of a reductive group $K$ and if zero is not a weight of a maximal torus of $K$ on $V$, then $\mathcal {D} (V)^K$ has enough finite dimensional representations. We also construct examples of FCR-algebras with any integer GK dimension $\geq 3$.References
- J. Alev, Action de groupes sur $A_1(\textbf {C})$, Ring theory (Antwerp, 1985) Lecture Notes in Math., vol. 1197, Springer, Berlin, 1986, pp. 1–9 (French). MR 859378, DOI 10.1007/BFb0076307
- S. C. Coutinho, A primer of algebraic $D$-modules, London Mathematical Society Student Texts, vol. 33, Cambridge University Press, Cambridge, 1995. MR 1356713, DOI 10.1017/CBO9780511623653
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- Ellen E. Kirkman and Lance W. Small, Examples of FCR-algebras, Comm. Algebra 30 (2002), no. 7, 3311–3326. MR 1914998, DOI 10.1081/AGB-120004489
- Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984 (German). MR 768181, DOI 10.1007/978-3-322-83813-1
- H. Kraft and L. W. Small, Invariant algebras and completely reducible representations, Math. Res. Lett. 1 (1994), no. 3, 297–307. MR 1302645, DOI 10.4310/MRL.1994.v1.n3.a2
- G. R. Krause and T. H. Lenagan, Growth of algebras and Gel′fand-Kirillov dimension, Research Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 781129
- T. Levasseur and J. T. Stafford, Rings of differential operators on classical rings of invariants, Mem. Amer. Math. Soc. 81 (1989), no. 412, vi+117. MR 988083, DOI 10.1090/memo/0412
- Domingo Luna, Slices étales, Sur les groupes algébriques, Bull. Soc. Math. France, Mém. 33, Soc. Math. France, Paris, 1973, pp. 81–105 (French). MR 0342523, DOI 10.24033/msmf.110
- Ian M. Musson, Rings of differential operators on invariant rings of tori, Trans. Amer. Math. Soc. 303 (1987), no. 2, 805–827. MR 902799, DOI 10.1090/S0002-9947-1987-0902799-2
- Ian M. Musson, Differential operators on toric varieties, J. Pure Appl. Algebra 95 (1994), no. 3, 303–315. MR 1295963, DOI 10.1016/0022-4049(94)90064-7
- Ian M. Musson and Michel Van den Bergh, Invariants under tori of rings of differential operators and related topics, Mem. Amer. Math. Soc. 136 (1998), no. 650, viii+85. MR 1446212, DOI 10.1090/memo/0650
- Gerald W. Schwarz, Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 3, 253–305. MR 1326669, DOI 10.24033/asens.1714
- Gerald W. Schwarz, Finite-dimensional representations of invariant differential operators, J. Algebra 258 (2002), no. 1, 160–204. Special issue in celebration of Claudio Procesi’s 60th birthday. MR 1958902, DOI 10.1016/S0021-8693(02)00500-8
- Hanspeter Kraft, Peter Slodowy, and Tonny A. Springer (eds.), Algebraische Transformationsgruppen und Invariantentheorie, DMV Seminar, vol. 13, Birkhäuser Verlag, Basel, 1989 (German). MR 1044582, DOI 10.1007/978-3-0348-7662-9
- Michel Van den Bergh, Some rings of differential operators for $\textrm {Sl}_2$-invariants are simple, J. Pure Appl. Algebra 107 (1996), no. 2-3, 309–335. Contact Franco-Belge en Algèbre (Diepenbeek, 1993). MR 1383180, DOI 10.1016/0022-4049(95)00072-0
Bibliographic Information
- Ian M. Musson
- Affiliation: Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
- MR Author ID: 189473
- Email: musson@uwm.edu
- Sonia L. Rueda
- Affiliation: Departamento de Matemáticas, E.T.S. Arquitectura, Universidad Politécnica de Madrid, Avda. Juan Herrera, 4, 28040 Madrid, Spain
- Email: srueda@aq.upm.es
- Received by editor(s): June 3, 2003
- Received by editor(s) in revised form: October 27, 2003
- Published electronically: July 22, 2004
- Additional Notes: The first author was partially supported by NSF grant DMS-0099923.
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 2739-2752
- MSC (2000): Primary 16S32
- DOI: https://doi.org/10.1090/S0002-9947-04-03573-1
- MathSciNet review: 2139525