The Bergman metric and the pluricomplex Green function
HTML articles powered by AMS MathViewer
- by Zbigniew Błocki PDF
- Trans. Amer. Math. Soc. 357 (2005), 2613-2625 Request permission
Abstract:
We improve a lower bound for the Bergman distance in smooth pseudoconvex domains due to Diederich and Ohsawa. As the main tool we use the pluricomplex Green function and an $L^2$-estimate for the $\overline \partial$-operator of Donnelly and Fefferman.References
- Bo Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 4, 1083–1094 (English, with English and French summaries). MR 1415958, DOI 10.5802/aif.1541
- Athanasios K. Tsakalidis, The nearest common ancestor in a dynamic tree, Automata, languages and programming (Karlsruhe, 1987) Lecture Notes in Comput. Sci., vol. 267, Springer, Berlin, 1987, pp. 489–498. MR 912730, DOI 10.1007/3-540-18088-5_{4}2
- Bo Berndtsson and Philippe Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), no. 1, 1–10. MR 1785069, DOI 10.1007/s002090000099
- Zbigniew Błocki, Estimates for the complex Monge-Ampère operator, Bull. Polish Acad. Sci. Math. 41 (1993), no. 2, 151–157 (1994). MR 1414762
- Z. Błocki, The complex Monge-Ampère operator in hyperconvex domains, Ann. Scuola Norm. Sup. Pisa 23 (1996), 721-747.
- Zbigniew Błocki, The complex Monge-Ampère operator in hyperconvex domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 4, 721–747 (1997). MR 1469572
- Bo-Yong Chen, Completeness of the Bergman metric on non-smooth pseudoconvex domains, Ann. Polon. Math. 71 (1999), no. 3, 241–251. MR 1704301, DOI 10.4064/ap-71-3-241-251
- Chen Boyong, A remark on the Bergman completeness, Complex Variables Theory Appl. 42 (2000), no. 1, 11–15. MR 1786123, DOI 10.1080/17476930008815267
- J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébraiques affines, Mémoire Soc. Math. de France 19 (1987).
- Jean-Pierre Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), no. 4, 519–564 (French). MR 881709, DOI 10.1007/BF01161920
- Klas Diederich and John Erik Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), no. 2, 129–141. MR 437806, DOI 10.1007/BF01390105
- K. Diederich, J. E. Fornæss, and G. Herbort, Boundary behavior of the Bergman metric, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 59–67. MR 740872, DOI 10.1090/pspum/041/740872
- K. Diederich and G. Herbort, Quantitative estimates for the Green function and an application to the Bergman metric, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 4, 1205–1228 (English, with English and French summaries). MR 1799743, DOI 10.5802/aif.1790
- Klas Diederich and Takeo Ohsawa, An estimate for the Bergman distance on pseudoconvex domains, Ann. of Math. (2) 141 (1995), no. 1, 181–190. MR 1314035, DOI 10.2307/2118631
- Harold Donnelly and Charles Fefferman, $L^{2}$-cohomology and index theorem for the Bergman metric, Ann. of Math. (2) 118 (1983), no. 3, 593–618. MR 727705, DOI 10.2307/2006983
- Gregor Herbort, The Bergman metric on hyperconvex domains, Math. Z. 232 (1999), no. 1, 183–196. MR 1714284, DOI 10.1007/PL00004754
- Gregor Herbort, The pluricomplex Green function on pseudoconvex domains with a smooth boundary, Internat. J. Math. 11 (2000), no. 4, 509–522. MR 1768171, DOI 10.1142/S0129167X00000258
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR 1242120, DOI 10.1515/9783110870312
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- Shoshichi Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267–290. MR 112162, DOI 10.1090/S0002-9947-1959-0112162-5
- Jeffery D. McNeal, Lower bounds on the Bergman metric near a point of finite type, Ann. of Math. (2) 136 (1992), no. 2, 339–360. MR 1185122, DOI 10.2307/2946608
- J. B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968/1969), 143–148. MR 0227465, DOI 10.1512/iumj.1969.18.18015
- Włodzimierz Zwonek, An example concerning Bergman completeness, Nagoya Math. J. 164 (2001), 89–101. MR 1869096, DOI 10.1017/S0027763000008059
Additional Information
- Zbigniew Błocki
- Affiliation: Jagiellonian University, Institute of Mathematics, Reymonta 4, 30-059 Kraków, Poland – and – Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig, Germany
- Email: blocki@im.uj.edu.pl
- Received by editor(s): May 29, 2003
- Published electronically: March 1, 2005
- Additional Notes: This research was partially supported by KBN Grant #2 P03A 028 19
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 357 (2005), 2613-2625
- MSC (2000): Primary 32F45; Secondary 32U35
- DOI: https://doi.org/10.1090/S0002-9947-05-03738-4
- MathSciNet review: 2139520