Seshadri constants at very general points
HTML articles powered by AMS MathViewer
- by Michael Nakamaye
- Trans. Amer. Math. Soc. 357 (2005), 3285-3297
- DOI: https://doi.org/10.1090/S0002-9947-04-03668-2
- Published electronically: December 28, 2004
- PDF | Request permission
Abstract:
We study the local positivity of an ample line bundle at a very general point of a smooth projective variety. We obtain a slight improvement of the result of Ein, Küchle, and Lazarsfeld.References
- Lawrence Ein and Robert Lazarsfeld, Seshadri constants on smooth surfaces, Astérisque 218 (1993), 177–186. Journées de Géométrie Algébrique d’Orsay (Orsay, 1992). MR 1265313
- Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math. 144 (2001), no. 2, 241–252. MR 1826369, DOI 10.1007/s002220100121
- Lawrence Ein, Oliver Küchle, and Robert Lazarsfeld, Local positivity of ample line bundles, J. Differential Geom. 42 (1995), no. 2, 193–219. MR 1366545
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Gerd Faltings and Gisbert Wüstholz, Diophantine approximations on projective spaces, Invent. Math. 116 (1994), no. 1-3, 109–138. MR 1253191, DOI 10.1007/BF01231559
- Michael Nakamaye, Seshadri constants and the geometry of surfaces, J. Reine Angew. Math. 564 (2003), 205–214. MR 2021040, DOI 10.1515/crll.2003.091
- Yum-Tong Siu, Effective very ampleness, Invent. Math. 124 (1996), no. 1-3, 563–571. MR 1369428, DOI 10.1007/s002220050063
Bibliographic Information
- Michael Nakamaye
- Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
- MR Author ID: 364646
- Email: nakamaye@math.unm.edu
- Received by editor(s): September 2, 2003
- Received by editor(s) in revised form: January 8, 2004
- Published electronically: December 28, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 3285-3297
- MSC (2000): Primary 14C20
- DOI: https://doi.org/10.1090/S0002-9947-04-03668-2
- MathSciNet review: 2135747