A converse to Dye’s theorem
HTML articles powered by AMS MathViewer
- by Greg Hjorth
- Trans. Amer. Math. Soc. 357 (2005), 3083-3103
- DOI: https://doi.org/10.1090/S0002-9947-04-03672-4
- Published electronically: July 22, 2004
- PDF | Request permission
Abstract:
Every non-amenable countable group induces orbit inequivalent ergodic equivalence relations on standard Borel probability spaces. Not every free, ergodic, measure preserving action of $\mathbb {F}_2$ on a standard Borel probability space is orbit equivalent to an action of a countable group on an inverse limit of finite spaces. There is a treeable non-hyperfinite Borel equivalence relation which is not universal for treeable in the $\leq _B$ ordering.References
- Scot Adams, Indecomposability of treed equivalence relations, Israel J. Math. 64 (1988), no. 3, 362–380 (1989). MR 995576, DOI 10.1007/BF02882427
- S. I. Bezuglyĭ and V. Ya. Golodets, Hyperfinite and $\textrm {II}_{1}$ actions for nonamenable groups, J. Functional Analysis 40 (1981), no. 1, 30–44. MR 607589, DOI 10.1016/0022-1236(81)90070-7
- A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 431–450 (1982). MR 662736, DOI 10.1017/s014338570000136x
- Klaus Schmidt, Asymptotically invariant sequences and an action of $\textrm {SL}(2,\,\textbf {Z})$ on the $2$-sphere, Israel J. Math. 37 (1980), no. 3, 193–208. MR 599454, DOI 10.1007/BF02760961
- H. A. Dye, On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), 119–159. MR 131516, DOI 10.2307/2372852
- H. A. Dye, On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963), 551–576. MR 158048, DOI 10.2307/2373108
- D. Gaboriau, S. Popa, An uncountable family of non-orbit equivalent actions of $\mathbb {F}_n$, preprint, Ecole Normale Superieure, Lyon, UMPA, 2003.
- Sergey L. Gefter and Valentin Ya. Golodets, Fundamental groups for ergodic actions and actions with unit fundamental groups, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 821–847 (1989). MR 1000122, DOI 10.2977/prims/1195173929
- Pierre de la Harpe and Alain Valette, La propriété $(T)$ de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989), 158 (French, with English summary). With an appendix by M. Burger. MR 1023471
- Vaughan F. R. Jones and Klaus Schmidt, Asymptotically invariant sequences and approximate finiteness, Amer. J. Math. 109 (1987), no. 1, 91–114. MR 878200, DOI 10.2307/2374553
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- A.S. Kechris, Notes on unitary representations and modular actions, preprint, Caltech, 2003.
- S. Jackson, A. S. Kechris, and A. Louveau, Countable Borel equivalence relations, J. Math. Log. 2 (2002), no. 1, 1–80. MR 1900547, DOI 10.1142/S0219061302000138
- Donald S. Ornstein and Benjamin Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 161–164. MR 551753, DOI 10.1090/S0273-0979-1980-14702-3
- S. Popa, Correspondences, typed notes, INCREST, preprint, 1986.
- S. Popa, On a class of type II$_1$ factors with Betti number invariants, typed notes, UCLA, 2002.
- Klaus Schmidt, Asymptotically invariant sequences and an action of $\textrm {SL}(2,\,\textbf {Z})$ on the $2$-sphere, Israel J. Math. 37 (1980), no. 3, 193–208. MR 599454, DOI 10.1007/BF02760961
- Klaus Schmidt, Some solved and unsolved problems concerning orbit equivalence of countable group actions, Proceedings of the conference on ergodic theory and related topics, II (Georgenthal, 1986) Teubner-Texte Math., vol. 94, Teubner, Leipzig, 1987, pp. 171–184. MR 931144
- Theodore A. Slaman and John R. Steel, Definable functions on degrees, Cabal Seminar 81–85, Lecture Notes in Math., vol. 1333, Springer, Berlin, 1988, pp. 37–55. MR 960895, DOI 10.1007/BFb0084969
- Elmar Thoma, Über unitäre Darstellungen abzählbarer, diskreter Gruppen, Math. Ann. 153 (1964), 111–138 (German). MR 160118, DOI 10.1007/BF01361180
- A. Zuk, Property (T) and Kazhdan constants for discrete groups, Geometric and Functional Analysis, vol. 13(2003), pp. 643–670.
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Greg Hjorth
- Affiliation: Department of Mathematics, University of California—Los Angeles, Los Angeles, California 90095-1555
- Email: greg@math.ucla.edu
- Received by editor(s): September 8, 2003
- Published electronically: July 22, 2004
- Additional Notes: The author was partially supported by NSF grant DMS 01-40503
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 3083-3103
- MSC (2000): Primary 03E15, 28D15, 37A15
- DOI: https://doi.org/10.1090/S0002-9947-04-03672-4
- MathSciNet review: 2135736