Fixed point index in symmetric products
HTML articles powered by AMS MathViewer
- by José M. Salazar
- Trans. Amer. Math. Soc. 357 (2005), 3493-3508
- DOI: https://doi.org/10.1090/S0002-9947-04-03533-0
- Published electronically: September 2, 2004
- PDF | Request permission
Abstract:
Let $U$ be an open subset of a locally compact metric ANR $X$ and let $f:U \rightarrow X$ be a continuous map. In this paper we study the fixed point index of the map that $f$ induces in the $n$-symmetric product of $X$, $F_{n}(X)$. This index can detect the existence of periodic orbits of period $\leq n$ of $f$, and it can be used to obtain the Euler characteristic of the $n$-symmetric product of a manifold $X$, $\chi (F_{n}(X))$. We compute $\chi (F_{n}(X))$ for all orientable compact surfaces without boundary.References
- Sun-Yung A. Chang, Paul C. Yang, Karsten Grove, and Jon G. Wolfson, Conformal, Riemannian and Lagrangian geometry, University Lecture Series, vol. 27, American Mathematical Society, Providence, RI, 2002. Papers from the 30th John H. Barrett Memorial Lectures delivered at the University of Tennessee, Knoxville, TN, May 2000; Edited by Alexandre Freire. MR 1911593, DOI 10.1090/ulect/027
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- K. Borsuk, S. Ulam, On symmetric products of topological spaces, Bull. Amer. Math. Soc. 37 (1931) 875-882.
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- D. W. Curtis, Hyperspaces of noncompact metric spaces, Compositio Math. 40 (1980), no. 2, 139–152. MR 563538
- L. Ambrosio and N. Dancer, Calculus of variations and partial differential equations, Springer-Verlag, Berlin, 2000. Topics on geometrical evolution problems and degree theory; Papers from the Summer School held in Pisa, September 1996; Edited by G. Buttazzo, A. Marino and M. K. V. Murthy. MR 1757706, DOI 10.1007/978-3-642-57186-2
- Robert L. Devaney, An introduction to chaotic dynamical systems, 2nd ed., Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. MR 1046376
- Albrecht Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1–8. MR 193634, DOI 10.1016/0040-9383(65)90044-3
- Robert W. Easton, Geometric methods for discrete dynamical systems, Oxford Engineering Science Series, vol. 50, Oxford University Press, New York, 1998. MR 1616726
- Andrzej Granas, The Leray-Schauder index and the fixed point theory for arbitrary ANRs, Bull. Soc. Math. France 100 (1972), 209–228. MR 309102
- Alejandro Illanes Mejía, Multicoherence of symmetric products, An. Inst. Mat. Univ. Nac. Autónoma México 25 (1985), 11–24. MR 848390
- Alejandro Illanes, Sergio Macías, and Sam B. Nadler Jr., Symmetric products and $Q$-manifolds, Geometry and topology in dynamics (Winston-Salem, NC, 1998/San Antonio, TX, 1999) Contemp. Math., vol. 246, Amer. Math. Soc., Providence, RI, 1999, pp. 137–141. MR 1732377, DOI 10.1090/conm/246/03780
- Patrice Le Calvez and Jean-Christophe Yoccoz, Un théorème d’indice pour les homéomorphismes du plan au voisinage d’un point fixe, Ann. of Math. (2) 146 (1997), no. 2, 241–293 (French, with English summary). MR 1477759, DOI 10.2307/2952463
- Sergio Macías, On symmetric products of continua, Topology Appl. 92 (1999), no. 2, 173–182. MR 1669815, DOI 10.1016/S0166-8641(97)00233-2
- Samuel Masih, Fixed points of symmetric product mappings of polyhedra and metric absolute neighborhood retracts, Fund. Math. 80 (1973), no. 2, 149–156. MR 370556, DOI 10.4064/fm-80-2-149-156
- Samuel Masih, On the fixed point index and the Nielsen fixed point theorem of symmetric product mappings, Fund. Math. 102 (1979), no. 2, 143–158. MR 525938, DOI 10.4064/fm-102-2-143-158
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), no. 3, 243–254. MR 774515, DOI 10.4064/fm-124-3-243-254
- Roger D. Nussbaum, Generalizing the fixed point index, Math. Ann. 228 (1977), no. 3, 259–278. MR 440587, DOI 10.1007/BF01420294
- Roger D. Nussbaum, The fixed point index and some applications, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 94, Presses de l’Université de Montréal, Montreal, QC, 1985. MR 791918
- Nancy Rallis, A fixed point index theory for symmetric product mappings, Manuscripta Math. 44 (1983), no. 1-3, 279–308. MR 709855, DOI 10.1007/BF01166084
- F. R. Ruiz del Portal and J. M. Salazar, Fixed point index in hyperspaces: a Conley-type index for discrete semidynamical systems, J. London Math. Soc. (2) 64 (2001), no. 1, 191–204. MR 1840779, DOI 10.1017/S0024610701002162
- Francisco R. Ruiz del Portal and José M. Salazar, Fixed point index of iterations of local homeomorphisms of the plane: a Conley index approach, Topology 41 (2002), no. 6, 1199–1212. MR 1923219, DOI 10.1016/S0040-9383(01)00035-0
- J. M. Salazar, Indice de punto fijo en hiperespacios e índice de Conley, Thesis (2001) Universidad Complutense de Madrid.
- R. M. Schori, Hyperspaces and symmetric products of topological spaces, Fund. Math. 63 (1968), 77–88. MR 232336, DOI 10.4064/fm-63-1-77-88
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
Bibliographic Information
- José M. Salazar
- Affiliation: Departamento de Matemáticas, Universidad de Alcalá, Alcalá de Henares, Madrid 28871, Spain
- Email: josem.salazar@uah.es
- Received by editor(s): May 23, 2003
- Received by editor(s) in revised form: October 22, 2003
- Published electronically: September 2, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 3493-3508
- MSC (2000): Primary 54H20, 54H25
- DOI: https://doi.org/10.1090/S0002-9947-04-03533-0
- MathSciNet review: 2146635