Classification of regular maps of negative prime Euler characteristic
HTML articles powered by AMS MathViewer
- by Antonio Breda d’Azevedo, Roman Nedela and Jozef Širáň
- Trans. Amer. Math. Soc. 357 (2005), 4175-4190
- DOI: https://doi.org/10.1090/S0002-9947-04-03622-0
- Published electronically: November 4, 2004
- PDF | Request permission
Abstract:
We give a classification of all regular maps on nonorientable surfaces with a negative odd prime Euler characteristic (equivalently, on nonorientable surfaces of genus $p+2$ where $p$ is an odd prime). A consequence of our classification is that there are no regular maps on nonorientable surfaces of genus $p+2$ where $p$ is a prime such that $p\equiv 1$ (mod $12$) and $p\ne 13$.References
- Robert D. M. Accola, On the number of automorphisms of a closed Riemann surface, Trans. Amer. Math. Soc. 131 (1968), 398–408. MR 222281, DOI 10.1090/S0002-9947-1968-0222281-6
- M. Belolipetsky and G. Jones, Automorphism groups of Riemann surfaces of genus $p+1$, where $p$ is a prime, submitted.
- Helmut Bender and George Glauberman, Characters of finite groups with dihedral Sylow $2$-subgroups, J. Algebra 70 (1981), no. 1, 200–215. MR 618388, DOI 10.1016/0021-8693(81)90253-2
- Helmut Bender and George Glauberman, Characters of finite groups with dihedral Sylow $2$-subgroups, J. Algebra 70 (1981), no. 1, 200–215. MR 618388, DOI 10.1016/0021-8693(81)90253-2
- Peter Bergau and D. Garbe, Nonorientable and orientable regular maps, Groups—Korea 1988 (Pusan, 1988) Lecture Notes in Math., vol. 1398, Springer, Berlin, 1989, pp. 29–42. MR 1032808, DOI 10.1007/BFb0086237
- H. R. Brahana, Regular maps and their groups, Amer. J. Math. 49 (1927), 268–284.
- Robin P. Bryant and David Singerman, Foundations of the theory of maps on surfaces with boundary, Quart. J. Math. Oxford Ser. (2) 36 (1985), no. 141, 17–41. MR 780347, DOI 10.1093/qmath/36.1.17
- W. Burnside, “Theory of Groups of Finite Order”, Cambridge Univ. Press, 1911.
- Marston Conder and Peter Dobcsányi, Determination of all regular maps of small genus, J. Combin. Theory Ser. B 81 (2001), no. 2, 224–242. MR 1814906, DOI 10.1006/jctb.2000.2008
- Marston Conder and Brent Everitt, Regular maps on non-orientable surfaces, Geom. Dedicata 56 (1995), no. 2, 209–219. MR 1338960, DOI 10.1007/BF01267644
- H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 4th ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 14, Springer-Verlag, Berlin-New York, 1980. MR 562913
- Leonard Eugene Dickson, Linear groups: With an exposition of the Galois field theory, Dover Publications, Inc., New York, 1958. With an introduction by W. Magnus. MR 0104735
- W. Dyck, Über Aufstellung und Untersuchung von Gruppe und Irrationalität regularer Riemannscher Flächen, Math. Ann. 17 (1880), 473–508.
- Dietmar Garbe, Über die regulären Zerlegungen geschlossener orientierbarer Flächen, J. Reine Angew. Math. 237 (1969), 39–55 (German). MR 246198, DOI 10.1515/crll.1969.237.39
- A. Gardiner, R. Nedela, J. Širáň, and M. Škoviera, Characterisation of graphs which underlie regular maps on closed surfaces, J. London Math. Soc. (2) 59 (1999), no. 1, 100–108. MR 1688492, DOI 10.1112/S0024610798006851
- Daniel Gorenstein and John H. Walter, The characterization of finite groups with dihedral Sylow $2$-subgroups. I, J. Algebra 2 (1965), 85–151. MR 177032, DOI 10.1016/0021-8693(65)90027-X
- Alexandre Grothendieck, Esquisse d’un programme, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 5–48 (French, with French summary). With an English translation on pp. 243–283. MR 1483107
- L. Heffter, Über metazyklische Gruppen und Nachbarconfigurationen, Math. Ann. 50 (1898), 261–268.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Lynne D. James and Gareth A. Jones, Regular orientable imbeddings of complete graphs, J. Combin. Theory Ser. B 39 (1985), no. 3, 353–367. MR 815402, DOI 10.1016/0095-8956(85)90060-7
- Gareth A. Jones, Maps on surfaces and Galois groups, Math. Slovaca 47 (1997), no. 1, 1–33. Graph theory (Donovaly, 1994). MR 1476746
- Gareth A. Jones and David Singerman, Theory of maps on orientable surfaces, Proc. London Math. Soc. (3) 37 (1978), no. 2, 273–307. MR 505721, DOI 10.1112/plms/s3-37.2.273
- Gareth Jones and David Singerman, Belyĭ functions, hypermaps and Galois groups, Bull. London Math. Soc. 28 (1996), no. 6, 561–590. MR 1405488, DOI 10.1112/blms/28.6.561
- Johannes Kepler, The harmony of the world, Memoirs of the American Philosophical Society, vol. 209, American Philosophical Society, Philadelphia, PA, 1997. Translated from the Latin and with an introduction and notes by E. J. Aiton, A. M. Duncan and J. V. Field; With a preface by Duncan and Field. MR 1442256
- F. Klein, Über die Transformation siebenter Ordnung der elliptischen Functionen, Math. Ann. 14 (1879), 428–471.
- C. Maclachlan, A bound for the number of automorphisms of a compact Riemann surface, J. London Math. Soc. 44 (1969), 265–272. MR 236378, DOI 10.1112/jlms/s1-44.1.265
- Coy L. May and Jay Zimmerman, There is a group of every strong symmetric genus, Bull. London Math. Soc. 35 (2003), no. 4, 433–439. MR 1978995, DOI 10.1112/S0024609303001954
- Roman Nedela and Martin Škoviera, Exponents of orientable maps, Proc. London Math. Soc. (3) 75 (1997), no. 1, 1–31. MR 1444311, DOI 10.1112/S0024611597000245
- Chih-han Sah, Groups related to compact Riemann surfaces, Acta Math. 123 (1969), 13–42. MR 251216, DOI 10.1007/BF02392383
- F. A. Sherk, The regular maps on a surface of genus three, Canadian J. Math. 11 (1959), 452–480. MR 107203, DOI 10.4153/CJM-1959-046-9
- Thomas W. Tucker, Finite groups acting on surfaces and the genus of a group, J. Combin. Theory Ser. B 34 (1983), no. 1, 82–98. MR 701174, DOI 10.1016/0095-8956(83)90009-6
- William T. Tutte, What is a map?, New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971) Academic Press, New York, 1973, pp. 309–325. MR 0376413
- S. Wilson and A. Breda D’Azevedo, Surfaces with no regular hypermaps, Discrete Math. 277 (2004), 241–274.
Bibliographic Information
- Antonio Breda d’Azevedo
- Affiliation: Departamento de Matematica, Universidade de Aveiro, Aveiro, Portugal
- Email: breda@mat.ua.pt
- Roman Nedela
- Affiliation: Institute of Mathematics, Slovak Academy of Science, Banská Bystrica, Slovakia
- MR Author ID: 262779
- Email: nedela@savbb.sk
- Jozef Širáň
- Affiliation: Department of Mathematics, SvF, Slovak Univ. of Technology, Bratislava, Slovakia
- Email: siran@math.sk
- Received by editor(s): April 9, 2003
- Received by editor(s) in revised form: December 11, 2003
- Published electronically: November 4, 2004
- Additional Notes: The authors thank the Department of Mathematics of the University of Aveiro and the Research Unit “Matemática e Aplicações” for supporting this project.
The second author acknowledges support from the VEGA Grant No. 2/2060/22 and from the APVT Grant No. 51-012502.
The third author was sponsored by the U.S.-Slovak Science and Technology Joint Fund under Project Number 020/2001, and also in part by the VEGA Grant No. 1/9176/02 and the APVT Grant No. 20-023302. - © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 4175-4190
- MSC (2000): Primary 05C10; Secondary 57M15, 57M60, 20F65, 05C25
- DOI: https://doi.org/10.1090/S0002-9947-04-03622-0
- MathSciNet review: 2159705