Double forms, curvature structures and the $(p,q)$-curvatures
HTML articles powered by AMS MathViewer
- by M.-L. Labbi
- Trans. Amer. Math. Soc. 357 (2005), 3971-3992
- DOI: https://doi.org/10.1090/S0002-9947-05-04001-8
- Published electronically: May 20, 2005
- PDF | Request permission
Abstract:
We introduce a natural extension of the metric tensor and the Hodge star operator to the algebra of double forms to study some aspects of the structure of this algebra. These properties are then used to study new Riemannian curvature invariants, called the $(p,q)$-curvatures. They are a generalization of the $p$-curvature obtained by substituting the Gauss-Kronecker tensor to the Riemann curvature tensor. In particular, for $p=0$, the $(0,q)$-curvatures coincide with the H. Weyl curvature invariants, for $p=1$ the $(1,q)$-curvatures are the curvatures of generalized Einstein tensors, and for $q=1$ the $(p,1)$-curvatures coincide with the $p$-curvatures. Also, we prove that the second H. Weyl curvature invariant is nonnegative for an Einstein manifold of dimension $n\geq 4$, and it is nonpositive for a conformally flat manifold with zero scalar curvature. A similar result is proved for the higher H. Weyl curvature invariants.References
- André Avez, Applications de la formule de Gauss-Bonnet-Chern aux variétés à quatre dimensions, C. R. Acad. Sci. Paris 256 (1963), 5488–5490 (French). MR 157320
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Ravindra S. Kulkarni, On the Bianchi Identities, Math. Ann. 199 (1972), 175–204. MR 339004, DOI 10.1007/BF01429873
- Labbi, M. L. Variétés Riemanniennes à $p$-courbure positive, Thèse, Publication Université Montpellier II (1995), France.
- Labbi, M. L. On a variational formula for the H. Weyl curvature invariants, to appear.
- Bang-Yen Chen, Franki Dillen, Leopold Verstraelen, and Luc Vrancken, Characterizations of Riemannian space forms, Einstein spaces and conformally flat spaces, Proc. Amer. Math. Soc. 128 (2000), no. 2, 589–598. MR 1664333, DOI 10.1090/S0002-9939-99-05332-0
- John A. Thorpe, Some remarks on the Gauss-Bonnet integral, J. Math. Mech. 18 (1969), 779–786. MR 0256307
- Weyl, H., On the volume of tubes, Amer. J. Math., vol. 61, 461-472 (1939).
Bibliographic Information
- M.-L. Labbi
- Affiliation: Department of Mathematics, College of Science, University of Bahrain, Isa Town 32038, Bahrain
- Email: labbi@sci.uob.bh
- Received by editor(s): July 22, 2003
- Published electronically: May 20, 2005
- © Copyright 2005 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 3971-3992
- MSC (2000): Primary 53B20, 53C21; Secondary 15A69
- DOI: https://doi.org/10.1090/S0002-9947-05-04001-8
- MathSciNet review: 2159696