Irregular hypergeometric systems associated with a singular monomial curve
HTML articles powered by AMS MathViewer
- by María Isabel Hartillo-Hermoso
- Trans. Amer. Math. Soc. 357 (2005), 4633-4646
- DOI: https://doi.org/10.1090/S0002-9947-04-03614-1
- Published electronically: December 28, 2004
- PDF | Request permission
Abstract:
In this paper we study irregular hypergeometric systems defined by one row. Specifically, we calculate slopes of such systems. In the case of reduced semigroups, we generalize the case studied by Castro and Takayama. In all the cases we find that there always exists a slope with respect to a hyperplane of this system. Only in the case of an irregular system defined by a $1\times 2$ integer matrix we might need a change of coordinates to study slopes at infinity. In the other cases slopes are always at the origin, defined with respect to a hyperplane. We also compute all the $L$-characteristic varieties of the system, so we have a section of the Gröbner fan of the module defined by the hypergeometric system.References
- Alan Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994), no. 2, 269–290. MR 1262208, DOI 10.1215/S0012-7094-94-07313-4
- A. Assi, F. J. Castro-Jiménez, and J. M. Granger, How to calculate the slopes of a $\scr D$-module, Compositio Math. 104 (1996), no. 2, 107–123. MR 1421395
- Francisco Jesús Castro-Jiménez and Nobuki Takayama, Singularities of the hypergeometric system associated with a monomial curve, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3761–3775. MR 1990172, DOI 10.1090/S0002-9947-03-03300-2
- I. M. Gel′fand, A. V. Zelevinskiĭ, and M. M. Kapranov, Hypergeometric functions and toric varieties, Funktsional. Anal. i Prilozhen. 23 (1989), no. 2, 12–26 (Russian); English transl., Funct. Anal. Appl. 23 (1989), no. 2, 94–106. MR 1011353, DOI 10.1007/BF01078777
- Philippe Maisonobe and Claude Sabbah (eds.), Éléments de la théorie des systèmes différentiels. $\scr D$-modules cohérents et holonomes, Travaux en Cours [Works in Progress], vol. 45, Hermann, Paris, 1993. Papers from the CIMPA Summer School held in Nice, August and September 1990. MR 1603676
- María Isabel Hartillo Hermoso, Slopes of hypergeometric systems of codimension one, Proceedings of the International Conference on Algebraic Geometry and Singularities (Spanish) (Sevilla, 2001), 2003, pp. 455–466. MR 2023195, DOI 10.4171/RMI/357
- Hotta, R. Equivariant ${\mathcal D}$-modules. Proceedings of ICPAM Spring School in Wuhan, edited by P. Torasso. Travaux en Cours, Hermann, Paris, to appear, math.RT/9805021, (1991).
- E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 0010757
- Yves Laurent, Polygône de Newton et $b$-fonctions pour les modules microdifférentiels, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 391–441 (French). MR 925721, DOI 10.24033/asens.1538
- Yves Laurent and Zoghman Mebkhout, Pentes algébriques et pentes analytiques d’un $\scr D$-module, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 1, 39–69 (French, with English and French summaries). MR 1670595, DOI 10.1016/S0012-9593(99)80008-1
- Laurent, Y. and Mebkhout, Z. Image inverse d’un ${\mathcal D}$-module et polygone de Newton. Prépublication de l’Institut Fourier n$^o$ 514 (2000).
- Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les $\scr D_X$-modules cohérents, Travaux en Cours [Works in Progress], vol. 35, Hermann, Paris, 1989 (French). With supplementary material by the author and L. Narváez Macarro. MR 1008245
- Zoghman Mebkhout, Le théorème de positivité de l’irrégularité pour les ${\scr D}_X$-modules, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 83–132 (French). MR 1106912, DOI 10.1007/978-0-8176-4576-2_{4}
- Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms and Computation in Mathematics, vol. 6, Springer-Verlag, Berlin, 2000. MR 1734566, DOI 10.1007/978-3-662-04112-3
- Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949, DOI 10.1090/ulect/008
Bibliographic Information
- María Isabel Hartillo-Hermoso
- Affiliation: Departamento de Matemáticas, Universidad de Cádiz, Aptdo. 40, Puerto Real 11510 (Cádiz), Spain
- Email: isabel.hartillo@uca.es
- Received by editor(s): July 15, 2003
- Received by editor(s) in revised form: January 21, 2004
- Published electronically: December 28, 2004
- Additional Notes: This work was partially supported by FQM-813, FQM-333, DGESIC BFM2001-3164 and HF2000-0044
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 357 (2005), 4633-4646
- MSC (2000): Primary 32C38; Secondary 13P10, 13N10, 33C80, 34M35
- DOI: https://doi.org/10.1090/S0002-9947-04-03614-1
- MathSciNet review: 2156724