## Hausdorff measures, dimensions and mutual singularity

HTML articles powered by AMS MathViewer

- by Manav Das PDF
- Trans. Amer. Math. Soc.
**357**(2005), 4249-4268 Request permission

## Abstract:

Let $(X,d)$ be a metric space. For a probability measure $\mu$ on a subset $E$ of $X$ and a Vitali cover $V$ of $E$, we introduce the notion of a $b_{\mu }$-Vitali subcover $V_{\mu }$, and compare the Hausdorff measures of $E$ with respect to these two collections. As an application, we consider graph directed self-similar measures $\mu$ and $\nu$ in $\mathbb {R}^{d}$ satisfying the open set condition. Using the notion of pointwise local dimension of $\mu$ with respect to $\nu$, we show how the Hausdorff dimension of some general multifractal sets may be computed using an appropriate stochastic process. As another application, we show that Olsen’s multifractal Hausdorff measures are mutually singular.## References

- Matthias Arbeiter and Norbert Patzschke,
*Random self-similar multifractals*, Math. Nachr.**181**(1996), 5–42. MR**1409071**, DOI 10.1002/mana.3211810102 - Patrick Billingsley,
*Hausdorff dimension in probability theory. II*, Illinois J. Math.**5**(1961), 291–298. MR**120339** - Robert Cawley and R. Daniel Mauldin,
*Multifractal decompositions of Moran fractals*, Adv. Math.**92**(1992), no. 2, 196–236. MR**1155465**, DOI 10.1016/0001-8708(92)90064-R - C. D. Cutler,
*A note on equivalent interval covering systems for Hausdorff dimension on $\textbf {R}$*, Internat. J. Math. Math. Sci.**11**(1988), no. 4, 643–649. MR**959443**, DOI 10.1155/S016117128800078X - Manabendra Das,
*Pointwise Local Dimensions*, Ph.D. Thesis, The Ohio State University, 1996. - Manav Das,
*Binary expansions and multifractals*, Fractal frontiers (Denver, CO, 1997) World Sci. Publ., River Edge, NJ, 1997, pp. 131–139. MR**1636266** - Manav Das,
*Local properties of self-similar measures*, Illinois J. Math.**42**(1998), no. 2, 313–332. MR**1612763** - Manav Das, Packings and Pseudo - Packings: Measures, Dimensions and Mutual Singularity, preprint.
- Gerald A. Edgar,
*Measure, topology, and fractal geometry*, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1990. MR**1065392**, DOI 10.1007/978-1-4757-4134-6 - G. A. Edgar and R. Daniel Mauldin,
*Multifractal decompositions of digraph recursive fractals*, Proc. London Math. Soc. (3)**65**(1992), no. 3, 604–628. MR**1182103**, DOI 10.1112/plms/s3-65.3.604 - Kenneth Falconer,
*Fractal geometry*, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR**1102677** - Thomas C. Halsey, Mogens H. Jensen, Leo P. Kadanoff, Itamar Procaccia, and Boris I. Shraiman,
*Fractal measures and their singularities: the characterization of strange sets*, Phys. Rev. A (3)**33**(1986), no. 2, 1141–1151. MR**823474**, DOI 10.1103/PhysRevA.33.1141 - John E. Hutchinson,
*Fractals and self-similarity*, Indiana Univ. Math. J.**30**(1981), no. 5, 713–747. MR**625600**, DOI 10.1512/iumj.1981.30.30055 - R. Daniel Mauldin and S. C. Williams,
*Hausdorff dimension in graph directed constructions*, Trans. Amer. Math. Soc.**309**(1988), no. 2, 811–829. MR**961615**, DOI 10.1090/S0002-9947-1988-0961615-4 - Lars Olsen,
*Random geometrically graph directed self-similar multifractals*, Pitman Research Notes in Mathematics Series, vol. 307, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994. MR**1297123**, DOI 10.2307/4351476 - L. Olsen,
*A multifractal formalism*, Adv. Math.**116**(1995), no. 1, 82–196. MR**1361481**, DOI 10.1006/aima.1995.1066 - Yakov B. Pesin,
*Dimension theory in dynamical systems*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications. MR**1489237**, DOI 10.7208/chicago/9780226662237.001.0001 - C. A. Rogers,
*Hausdorff measures*, Cambridge University Press, London-New York, 1970. MR**0281862** - Andreas Schief,
*Separation properties for self-similar sets*, Proc. Amer. Math. Soc.**122**(1994), no. 1, 111–115. MR**1191872**, DOI 10.1090/S0002-9939-1994-1191872-1 - E. Seneta,
*Non-negative matrices*, Halsted Press [John Wiley & Sons], New York, 1973. An introduction to theory and applications. MR**0389944** - JingLing Wang,
*The open set conditions for graph directed self-similar sets*, Random Comput. Dynam.**5**(1997), no. 4, 283–305. MR**1483871**

## Additional Information

**Manav Das**- Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
- Address at time of publication: Department of Mathematics, University of Louisville, Louisville, Kentucky 40292
- MR Author ID: 632693
- Email: manav@louisville.edu
- Received by editor(s): May 19, 1997
- Published electronically: June 13, 2005
- © Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**357**(2005), 4249-4268 - MSC (2000): Primary 28A78; Secondary 28A80, 60A10
- DOI: https://doi.org/10.1090/S0002-9947-05-04031-6
- MathSciNet review: 2156710