## An invariant of tangle cobordisms

HTML articles powered by AMS MathViewer

- by Mikhail Khovanov PDF
- Trans. Amer. Math. Soc.
**358**(2006), 315-327 Request permission

## Abstract:

We construct a new invariant of tangle cobordisms. The invariant of a tangle is a complex of bimodules over certain rings, well-defined up to chain homotopy equivalence. The invariant of a tangle cobordism is a homomorphism between complexes of bimodules assigned to boundaries of the cobordism.## References

- John C. Baez and Laurel Langford,
*Higher-dimensional algebra. IV. 2-tangles*, Adv. Math.**180**(2003), no. 2, 705–764. MR**2020556**, DOI 10.1016/S0001-8708(03)00018-5 - J. Scott Carter, Joachim H. Rieger, and Masahico Saito,
*A combinatorial description of knotted surfaces and their isotopies*, Adv. Math.**127**(1997), no. 1, 1–51. MR**1445361**, DOI 10.1006/aima.1997.1618 - J. Scott Carter and Masahico Saito,
*Reidemeister moves for surface isotopies and their interpretation as moves to movies*, J. Knot Theory Ramifications**2**(1993), no. 3, 251–284. MR**1238875**, DOI 10.1142/S0218216593000167 - J. Scott Carter and Masahico Saito,
*Knotted surfaces and their diagrams*, Mathematical Surveys and Monographs, vol. 55, American Mathematical Society, Providence, RI, 1998. MR**1487374**, DOI 10.1090/surv/055 - John E. Fischer Jr.,
*$2$-categories and $2$-knots*, Duke Math. J.**75**(1994), no. 2, 493–526. MR**1290200**, DOI 10.1215/S0012-7094-94-07514-5 - M. Jacobsson, An invariant of link cobordisms from Khovanov’s homology theory, arXiv:math.GT/0206303.
- V. M. Kharlamov and V. G. Turaev,
*On the definition of the $2$-category of $2$-knots*, Mathematics in St. Petersburg, Amer. Math. Soc. Transl. Ser. 2, vol. 174, Amer. Math. Soc., Providence, RI, 1996, pp. 205–221. MR**1386661**, DOI 10.1090/trans2/174/15 - M. Khovanov, Crossingless matchings and the cohomology of $(n,n)$ Springer varieties, preprint arXiv:math.QA/0202113.
- Mikhail Khovanov,
*A functor-valued invariant of tangles*, Algebr. Geom. Topol.**2**(2002), 665–741. MR**1928174**, DOI 10.2140/agt.2002.2.665 - Mikhail Khovanov,
*A categorification of the Jones polynomial*, Duke Math. J.**101**(2000), no. 3, 359–426. MR**1740682**, DOI 10.1215/S0012-7094-00-10131-7 - D. Roseman, Reidemeister-type moves for surfaces in four dimensional space,
*Knot theory*(Warsaw, 1995), Banach Center Publ., 42. Polish Acad. Sci., Warsaw, 1998, pp. 347–380.

## Additional Information

**Mikhail Khovanov**- Affiliation: Department of Mathematics, University of California, One Shields Ave., Davis, California 95616
- MR Author ID: 363306
- Email: mikhail@math.ucdavis.edu
- Received by editor(s): February 20, 2003
- Received by editor(s) in revised form: March 1, 2004
- Published electronically: March 18, 2005
- © Copyright 2005 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**358**(2006), 315-327 - MSC (2000): Primary 57Q45
- DOI: https://doi.org/10.1090/S0002-9947-05-03665-2
- MathSciNet review: 2171235