A generalization of Euler’s hypergeometric transformation
HTML articles powered by AMS MathViewer
- by Robert S. Maier PDF
- Trans. Amer. Math. Soc. 358 (2006), 39-57 Request permission
Abstract:
Euler’s transformation formula for the Gauss hypergeometric function ${}_2F_1$ is extended to hypergeometric functions of higher order. Unusually, the generalized transformation constrains the hypergeometric function parameters algebraically but not linearly. Its consequences for hypergeometric summation are explored. It has as a corollary a summation formula of Slater. From this formula new one-term evaluations of ${}_2F_1(-1)$ and ${}_3F_2(1)$ are derived by applying transformations in the Thomae group. Their parameters are also constrained nonlinearly. Several new one-term evaluations of ${}_2F_1(-1)$ with linearly constrained parameters are derived as well.References
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Richard Askey, Variants of Clausen’s formula for the square of a special $_2F_1$, Number theory and related topics (Bombay, 1988) Tata Inst. Fund. Res. Stud. Math., vol. 12, Tata Inst. Fund. Res., Bombay, 1989, pp. 1–12. MR 1441321
- Richard Askey, A look at the Bateman project, The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992) Contemp. Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 29–43. MR 1292896, DOI 10.1090/conm/169/01650
- W. N. Bailey, On the sum of a terminating $_3F_2(1)$, Quart. J. Math. Oxford Ser. (2) 4 (1953), 237–240. MR 57381, DOI 10.1093/qmath/4.1.237
- W. A. Beyer, J. D. Louck, and P. R. Stein, Group theoretical basis of some identities for the generalized hypergeometric series, J. Math. Phys. 28 (1987), no. 3, 497–508. MR 877220, DOI 10.1063/1.527634
- V. A. Džrbašjan, On a theorem of Whipple, Ž. Vyčisl. Mat i Mat. Fiz. 4 (1964), 348–351 (Russian). MR 160945
- H. Exton, A new two-term relation for the $_3F_2$ hypergeometric function of unit argument, J. Comput. Appl. Math. 106 (1999), no. 2, 395–397. MR 1696419, DOI 10.1016/S0377-0427(99)00077-1
- R. Wm. Gosper Jr., A calculus of series rearrangements, Algorithms and complexity (Proc. Sympos., Carnegie-Mellon Univ., Pittsburgh, Pa., 1976) Academic Press, New York, 1976, pp. 121–151. MR 0451617
- É. Goursat, Sur l’équation différentielle linéaire qui admet pour intégrale la série hypergéométrique, Ann. Sci. École Normale Sup. (2) 10 (1881), S3–S142.
- Henry W. Gould, Combinatorial identities, Henry W. Gould, Morgantown, W. Va., 1972. A standardized set of tables listing 500 binomial coefficient summations. MR 0354401
- Ira Gessel and Dennis Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal. 13 (1982), no. 2, 295–308. MR 647127, DOI 10.1137/0513021
- G. H. Hardy, A chapter from Ramanujan’s note-book, Proc. Cambridge Philos. Soc. 21 (1923), no. 5, 492–503.
- Wolfram Koepf, Hypergeometric summation, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1998. An algorithmic approach to summation and special function identities. MR 1644447, DOI 10.1007/978-3-322-92918-1
- C. Krattenthaler and K. Srinivasa Rao, Automatic generation of hypergeometric identities by the beta integral method, Proceedings of the International Conference on Special Functions and their Applications (Chennai, 2002), 2003, pp. 159–173. MR 2022609, DOI 10.1016/S0377-0427(03)00629-0
- Yudell L. Luke, The special functions and their approximations, Vol. I, Mathematics in Science and Engineering, Vol. 53, Academic Press, New York-London, 1969. MR 0241700
- Yudell L. Luke, Mathematical functions and their approximations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0501762
- J. D. Niblett, Some hypergeometric identities, Pacific J. Math. 2 (1952), 219–225. MR 47837
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and series. Vol. 3, Gordon and Breach Science Publishers, New York, 1990. More special functions; Translated from the Russian by G. G. Gould. MR 1054647
- Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger, $A=B$, A K Peters, Ltd., Wellesley, MA, 1996. With a foreword by Donald E. Knuth; With a separately available computer disk. MR 1379802
- Earl D. Rainville, The contiguous function relations for ${}_pF_q$ with applications to Bateman’s $J_n^{u,v}$ and Rice’s $H_n(\zeta ,p,v)$, Bull. Amer. Math. Soc. 51 (1945), 714–723. MR 12726, DOI 10.1090/S0002-9904-1945-08425-0
- Ranjan Roy, Binomial identities and hypergeometric series, Amer. Math. Monthly 94 (1987), no. 1, 36–46. MR 873603, DOI 10.2307/2323500
- J. H. C. Searle, The summation of certain series, Messenger Math. 38 (1909), 138–144.
- H. S. Shukla, Certain transformations of nearly-poised bilateral hypergeometric series of special type, Canadian J. Math. 10 (1958), 195–201. MR 95298, DOI 10.4153/CJM-1958-022-1
- L. J. Slater, A note on the partial sum of a certain hypergeometric series, Math. Gaz. 39 (1955), 217–218.
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
- D. Stanton, A hypergeometric hierarchy for the Andrews evaluations, Ramanujan J. 2 (1998), no. 4, 499–509. MR 1665324, DOI 10.1023/A:1009784911098
- J. Thomae, Ueber die Funktionen, welche durch Reihen von der Form dargestellt werden $1 + \frac {p}{1} \frac {p’}{q’}\frac {p''}{q''} + \frac {p}{1}\frac {p+1}{2} \frac {p’}{q’}\frac {p’+1}{q’+1} \frac {p''}{q''}\frac {p''+1}{q''+1}+\cdots$, J. Reine Angew. Math. 87 (1879), 26–73.
- Raimundas Vidunas, A generalization of Kummer’s identity, Rocky Mountain J. Math. 32 (2002), no. 2, 919–936. Conference on Special Functions (Tempe, AZ, 2000). MR 1934920, DOI 10.1216/rmjm/1030539701
- —, Algebraic transformations of Gauss hypergeometric functions, Preprint, available as arXiv:math.CA/0408269, 2004.
- F. J. W. Whipple, A group of generalized hypergeometric series: Relations between 120 allied series of the type $F\bigl [{{a,b,c}\atop {e,f}}\bigr ]$, Proc. London Math. Soc. (2) 23 (1924), no. 2, 104–114.
- —, On series allied to the hypergeometric series with argument $-1$, Proc. London Math. Soc. (2) 30 (1929), no. 2, 81–94.
- Jet Wimp, The computation of $_{3}F_{2}(1)$, Internat. J. Comput. Math. 10 (1981/82), no. 1, 55–62. MR 644716, DOI 10.1080/00207168108803266
- Jet Wimp, Irreducible recurrences and representation theorems for $_{3}F_{2}(1)$, Comput. Math. Appl. 9 (1983), no. 5, 669–678. MR 726815, DOI 10.1016/0898-1221(83)90124-4
- Jet Wimp, The umbral calculus and identities for hypergeometric functions with special arguments, Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996) Progr. Math., vol. 161, Birkhäuser Boston, Boston, MA, 1998, pp. 439–457. MR 1627394
- Doron Zeilberger, Gauss’s ${}_2F_1(1)$ cannot be generalized to ${}_2F_1(x)$, J. Comput. Appl. Math. 39 (1992), no. 3, 379–382. MR 1164298, DOI 10.1016/0377-0427(92)90211-F
Additional Information
- Robert S. Maier
- Affiliation: Departments of Mathematics and Physics, University of Arizona, Tucson, Arizona 85721
- MR Author ID: 118320
- ORCID: 0000-0002-1259-1341
- Email: rsm@math.arizona.edu
- Received by editor(s): April 11, 2003
- Published electronically: August 25, 2005
- Additional Notes: This work was partially supported by NSF grant PHY-0099484.
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 39-57
- MSC (2000): Primary 33C20; Secondary 33C05, 34Mxx
- DOI: https://doi.org/10.1090/S0002-9947-05-04045-6
- MathSciNet review: 2171222