Bochner-Weitzenböck formulas and curvature actions on Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Yasushi Homma PDF
- Trans. Amer. Math. Soc. 358 (2006), 87-114 Request permission
Abstract:
Gradients are natural first order differential operators depending on Riemannian metrics. The principal symbols of them are related to the enveloping algebra and higher Casimir elements. We give formulas in the enveloping algebra that induce not only identities for higher Casimir elements but also all Bochner-Weitzenböck formulas for gradients. As applications, we give some vanishing theorems.References
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Jean-Pierre Bourguignon, Les variétés de dimension $4$ à signature non nulle dont la courbure est harmonique sont d’Einstein, Invent. Math. 63 (1981), no. 2, 263–286 (French). MR 610539, DOI 10.1007/BF01393878
- Thomas Branson, Stein-Weiss operators and ellipticity, J. Funct. Anal. 151 (1997), no. 2, 334–383. MR 1491546, DOI 10.1006/jfan.1997.3162
- Thomas Branson, Second order conformal covariants, Proc. Amer. Math. Soc. 126 (1998), no. 4, 1031–1042. MR 1422849, DOI 10.1090/S0002-9939-98-04092-1
- T. Branson, Kato constants in Riemannian geometry, Math. Res. Lett. 7 (2000), no. 2-3, 245–261. MR 1764320, DOI 10.4310/MRL.2000.v7.n3.a1
- Thomas Branson and Oussama Hijazi, Vanishing theorems and eigenvalue estimates in Riemannian spin geometry, Internat. J. Math. 8 (1997), no. 7, 921–934. MR 1482970, DOI 10.1142/S0129167X97000433
- Thomas Branson and Oussama Hijazi, Improved forms of some vanishing theorems in Riemannian spin geometry, Internat. J. Math. 11 (2000), no. 3, 291–304. MR 1769610, DOI 10.1142/S0129167X00000165
- Thomas Branson and Oussama Hijazi, Bochner-Weitzenböck formulas associated with the Rarita-Schwinger operator, Internat. J. Math. 13 (2002), no. 2, 137–182. MR 1891206, DOI 10.1142/S0129167X02001174
- David M. J. Calderbank, Paul Gauduchon, and Marc Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), no. 1, 214–255. MR 1760284, DOI 10.1006/jfan.2000.3563
- H. D. Fegan, Conformally invariant first order differential operators, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 107, 371–378. MR 482879, DOI 10.1093/qmath/27.3.371
- Thomas Friedrich, Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, vol. 25, American Mathematical Society, Providence, RI, 2000. Translated from the 1997 German original by Andreas Nestke. MR 1777332, DOI 10.1090/gsm/025
- Paul Gauduchon, Structures de Weyl et théorèmes d’annulation sur une variété conforme autoduale, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18 (1991), no. 4, 563–629 (French). MR 1153706
- S. Gallot and D. Meyer, Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl. (9) 54 (1975), no. 3, 259–284 (French). MR 454884
- N. J. Hitchin, Linear field equations on self-dual spaces, Proc. Roy. Soc. London Ser. A 370 (1980), no. 1741, 173–191. MR 563832, DOI 10.1098/rspa.1980.0028
- Y. Homma, Bochner identities for Kählerian gradients, to appear in Math. Ann.
- Yasushi Homma, Casimir elements and Bochner identities on Riemannian manifolds, Clifford algebras (Cookeville, TN, 2002) Prog. Math. Phys., vol. 34, Birkhäuser Boston, Boston, MA, 2004, pp. 185–199. MR 2025980
- Yasushi Homma, Universal Bochner-Weitzenböck formulas for hyper-Kählerian gradients, Advances in analysis and geometry, Trends Math., Birkhäuser, Basel, 2004, pp. 189–208. MR 2077086
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- C. O. Nwachuku and M. A. Rashid, Eigenvalues of the Casimir operators of the orthogonal and symplectic groups, J. Mathematical Phys. 17 (1976), no. 8, 1611–1616. MR 411409, DOI 10.1063/1.523082
- S. Okubo, Casimir invariants and vector operators in simple and classical Lie algebras, J. Math. Phys. 18 (1977), 2382-2394.
- E. M. Stein and G. Weiss, Generalization of the Cauchy-Riemann equations and representations of the rotation group, Amer. J. Math. 90 (1968), 163–196. MR 223492, DOI 10.2307/2373431
- Robert S. Strichartz, Linear algebra of curvature tensors and their covariant derivatives, Canad. J. Math. 40 (1988), no. 5, 1105–1143. MR 973512, DOI 10.4153/CJM-1988-046-7
- D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0473097
Additional Information
- Yasushi Homma
- Affiliation: Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo, 2641 Noda, Chiba, 278-8510, Japan
- Email: homma_yasushi@ma.noda.tus.ac.jp
- Received by editor(s): July 3, 2003
- Published electronically: August 25, 2005
- Additional Notes: The author was supported by the Grant-in-Aid for JSPS Fellows for Young Scientists.
- © Copyright 2005 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 358 (2006), 87-114
- MSC (2000): Primary 53B20, 58J60, 17B35
- DOI: https://doi.org/10.1090/S0002-9947-05-04068-7
- MathSciNet review: 2171224