Polar sets on metric spaces
Authors:
Juha Kinnunen and Nageswari Shanmugalingam
Journal:
Trans. Amer. Math. Soc. 358 (2006), 11-37
MSC (2000):
Primary 31C45, 49N60
DOI:
https://doi.org/10.1090/S0002-9947-05-04085-7
Published electronically:
August 25, 2005
MathSciNet review:
2171221
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that if $X$ is a proper metric measure space equipped with a doubling measure supporting a Poincaré inequality, then subsets of $X$ with zero $p$-capacity are precisely the $p$-polar sets; that is, a relatively compact subset of a domain in $X$ is of zero $p$-capacity if and only if there exists a $p$-superharmonic function whose set of singularities contains the given set. In addition, we prove that if $X$ is a $p$-hyperbolic metric space, then the $p$-superharmonic function can be required to be $p$-superharmonic on the entire space $X$. We also study the the following question: If a set is of zero $p$-capacity, does there exist a $p$-superharmonic function whose set of singularities is precisely the given set?
- Jana Björn, Boundary continuity for quasiminimizers on metric spaces, Illinois J. Math. 46 (2002), no. 2, 383–403. MR 1936925
- Jana Björn, Paul MacManus, and Nageswari Shanmugalingam, Fat sets and pointwise boundary estimates for $p$-harmonic functions in metric spaces, J. Anal. Math. 85 (2001), 339–369. MR 1869615, DOI https://doi.org/10.1007/BF02788087
- J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. MR 1708448, DOI https://doi.org/10.1007/s000390050094
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
- B. Franchi, P. Hajłasz, and P. Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 6, 1903–1924. MR 1738070
- Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160, DOI https://doi.org/10.1090/memo/0688
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1207810
- Ilkka Holopainen, Nonlinear potential theory and quasiregular mappings on Riemannian manifolds, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 74 (1990), 45. MR 1052971
- Sari Kallunki and Nageswari Shanmugalingam, Modulus and continuous capacity, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 2, 455–464. MR 1833251
- T. Kilpeläinen, Potential theory for supersolutions of degenerate elliptic equations, Indiana Univ. Math. J. 38 (1989), no. 2, 253–275. MR 997383, DOI https://doi.org/10.1512/iumj.1989.38.38013
- Tero Kilpeläinen, Singular solutions to $p$-Laplacian type equations, Ark. Mat. 37 (1999), no. 2, 275–289. MR 1714768, DOI https://doi.org/10.1007/BF02412215
- Tero Kilpeläinen, Juha Kinnunen, and Olli Martio, Sobolev spaces with zero boundary values on metric spaces, Potential Anal. 12 (2000), no. 3, 233–247. MR 1752853, DOI https://doi.org/10.1023/A%3A1008601220456
- Tero Kilpeläinen and Jan Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 4, 591–613. MR 1205885
- Tero Kilpeläinen and Jan Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), no. 1, 137–161. MR 1264000, DOI https://doi.org/10.1007/BF02392793
- Juha Kinnunen and Olli Martio, The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 2, 367–382. MR 1404091
- Juha Kinnunen and Olli Martio, Nonlinear potential theory on metric spaces, Illinois J. Math. 46 (2002), no. 3, 857–883. MR 1951245
- Juha Kinnunen and Nageswari Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), no. 3, 401–423. MR 1856619, DOI https://doi.org/10.1007/s002290100193
- Pekka Koskela and Paul MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math. 131 (1998), no. 1, 1–17. MR 1628655
- P. Koskela, N. Shanmugalingam, and H. Tuominen, Removable sets for the Poincaré inequality on metric spaces, Indiana Univ. Math. J. 49 (2000), no. 1, 333–352. MR 1777027, DOI https://doi.org/10.1512/iumj.2000.49.1719
- Pasi Mikkonen, On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn. Math. Diss. 104 (1996), 71. MR 1386213
- Nageswari Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), no. 3, 1021–1050. MR 1879250
- Nageswari Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243–279. MR 1809341, DOI https://doi.org/10.4171/RMI/275
- Nageswari Shanmugalingam, Some convergence results for $p$-harmonic functions on metric measure spaces, Proc. London Math. Soc. (3) 87 (2003), no. 1, 226–246. MR 1978575, DOI https://doi.org/10.1112/S0024611503014151
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 31C45, 49N60
Retrieve articles in all journals with MSC (2000): 31C45, 49N60
Additional Information
Juha Kinnunen
Affiliation:
Department of Mathematical Sciences, P.O. Box 3000, FI-90014 University of Oulu, Finland
MR Author ID:
349676
Email:
juha.kinnunen@oulu.fi
Nageswari Shanmugalingam
Affiliation:
Department of Mathematical Sciences, P.O. Box 210025, University of Cincinnati, Cincinnati, Ohio 45221-0025
MR Author ID:
666716
Email:
nages@math.uc.edu
Keywords:
Minimizers,
variational integrals,
polar sets,
zero capacity sets
Received by editor(s):
February 27, 2003
Published electronically:
August 25, 2005
Article copyright:
© Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.