Polar sets on metric spaces
HTML articles powered by AMS MathViewer
- by Juha Kinnunen and Nageswari Shanmugalingam PDF
- Trans. Amer. Math. Soc. 358 (2006), 11-37 Request permission
Abstract:
We show that if $X$ is a proper metric measure space equipped with a doubling measure supporting a Poincaré inequality, then subsets of $X$ with zero $p$-capacity are precisely the $p$-polar sets; that is, a relatively compact subset of a domain in $X$ is of zero $p$-capacity if and only if there exists a $p$-superharmonic function whose set of singularities contains the given set. In addition, we prove that if $X$ is a $p$-hyperbolic metric space, then the $p$-superharmonic function can be required to be $p$-superharmonic on the entire space $X$. We also study the the following question: If a set is of zero $p$-capacity, does there exist a $p$-superharmonic function whose set of singularities is precisely the given set?References
- Jana Björn, Boundary continuity for quasiminimizers on metric spaces, Illinois J. Math. 46 (2002), no. 2, 383–403. MR 1936925
- Jana Björn, Paul MacManus, and Nageswari Shanmugalingam, Fat sets and pointwise boundary estimates for $p$-harmonic functions in metric spaces, J. Anal. Math. 85 (2001), 339–369. MR 1869615, DOI 10.1007/BF02788087
- J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. MR 1708448, DOI 10.1007/s000390050094
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
- B. Franchi, P. Hajłasz, and P. Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 6, 1903–1924. MR 1738070
- Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160, DOI 10.1090/memo/0688
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1207810
- Ilkka Holopainen, Nonlinear potential theory and quasiregular mappings on Riemannian manifolds, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 74 (1990), 45. MR 1052971
- Sari Kallunki and Nageswari Shanmugalingam, Modulus and continuous capacity, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 2, 455–464. MR 1833251
- T. Kilpeläinen, Potential theory for supersolutions of degenerate elliptic equations, Indiana Univ. Math. J. 38 (1989), no. 2, 253–275. MR 997383, DOI 10.1512/iumj.1989.38.38013
- Tero Kilpeläinen, Singular solutions to $p$-Laplacian type equations, Ark. Mat. 37 (1999), no. 2, 275–289. MR 1714768, DOI 10.1007/BF02412215
- Tero Kilpeläinen, Juha Kinnunen, and Olli Martio, Sobolev spaces with zero boundary values on metric spaces, Potential Anal. 12 (2000), no. 3, 233–247. MR 1752853, DOI 10.1023/A:1008601220456
- Tero Kilpeläinen and Jan Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 4, 591–613. MR 1205885
- Tero Kilpeläinen and Jan Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), no. 1, 137–161. MR 1264000, DOI 10.1007/BF02392793
- Juha Kinnunen and Olli Martio, The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 2, 367–382. MR 1404091
- Juha Kinnunen and Olli Martio, Nonlinear potential theory on metric spaces, Illinois J. Math. 46 (2002), no. 3, 857–883. MR 1951245
- Juha Kinnunen and Nageswari Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), no. 3, 401–423. MR 1856619, DOI 10.1007/s002290100193
- Pekka Koskela and Paul MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math. 131 (1998), no. 1, 1–17. MR 1628655
- P. Koskela, N. Shanmugalingam, and H. Tuominen, Removable sets for the Poincaré inequality on metric spaces, Indiana Univ. Math. J. 49 (2000), no. 1, 333–352. MR 1777027, DOI 10.1512/iumj.2000.49.1719
- Pasi Mikkonen, On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn. Math. Diss. 104 (1996), 71. MR 1386213
- Nageswari Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), no. 3, 1021–1050. MR 1879250
- Nageswari Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243–279. MR 1809341, DOI 10.4171/RMI/275
- Nageswari Shanmugalingam, Some convergence results for $p$-harmonic functions on metric measure spaces, Proc. London Math. Soc. (3) 87 (2003), no. 1, 226–246. MR 1978575, DOI 10.1112/S0024611503014151
Additional Information
- Juha Kinnunen
- Affiliation: Department of Mathematical Sciences, P.O. Box 3000, FI-90014 University of Oulu, Finland
- MR Author ID: 349676
- Email: juha.kinnunen@oulu.fi
- Nageswari Shanmugalingam
- Affiliation: Department of Mathematical Sciences, P.O. Box 210025, University of Cincinnati, Cincinnati, Ohio 45221-0025
- MR Author ID: 666716
- Email: nages@math.uc.edu
- Received by editor(s): February 27, 2003
- Published electronically: August 25, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 11-37
- MSC (2000): Primary 31C45, 49N60
- DOI: https://doi.org/10.1090/S0002-9947-05-04085-7
- MathSciNet review: 2171221