Representation formulae and inequalities for solutions of a class of second order partial differential equations
Authors:
Lorenzo D'Ambrosio, Enzo Mitidieri and Stanislav I. Pohozaev
Journal:
Trans. Amer. Math. Soc. 358 (2006), 893-910
MSC (2000):
Primary 35H10, 35C15, 26D10
DOI:
https://doi.org/10.1090/S0002-9947-05-03717-7
Published electronically:
April 22, 2005
MathSciNet review:
2177044
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a possibly degenerate second order differential operator and let
be its fundamental solution at
; here
is a suitable distance. In this paper we study necessary and sufficient conditions for the weak solutions of
on
to satisfy the representation formula

We prove that (R) holds provided is superlinear, without any assumption on the behavior of
at infinity. On the other hand, if
satisfies the condition

then (R) holds with no growth assumptions on

- 1. William Beckner, On the Grushin operator and hyperbolic symmetry, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1233–1246. MR 1709740, https://doi.org/10.1090/S0002-9939-00-05630-6
- 2. A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Uniform Gaussian estimates for the fundamental solutions for heat operators on Carnot groups, Adv. Differential Equations 7 (2002), no. 10, 1153–1192. MR 1919700
- 3. Haïm Brezis and Shoshana Kamin, Sublinear elliptic equations in 𝑅ⁿ, Manuscripta Math. 74 (1992), no. 1, 87–106. MR 1141779, https://doi.org/10.1007/BF02567660
- 4. Lorenzo D’Ambrosio and Sandra Lucente, Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Differential Equations 193 (2003), no. 2, 511–541. MR 1998967, https://doi.org/10.1016/S0022-0396(03)00138-4
- 5. G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, https://doi.org/10.1007/BF02386204
- 6. G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 657581
- 7. Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028
- 8. Léonard Gallardo, Capacités, mouvement brownien et problème de l’épine de Lebesgue sur les groupes de Lie nilpotents, Probability measures on groups (Oberwolfach, 1981) Lecture Notes in Math., vol. 928, Springer, Berlin-New York, 1982, pp. 96–120 (French, with English summary). MR 669065
- 9. Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160, https://doi.org/10.1090/memo/0688
- 10. Juha Heinonen, Calculus on Carnot groups, Fall School in Analysis (Jyväskylä, 1994) Report, vol. 68, Univ. Jyväskylä, Jyväskylä, 1995, pp. 1–31. MR 1351042, https://doi.org/10.1530/jrf.0.0680001
- 11. È. Mitidieri and S. I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova 234 (2001), 1–384 (Russian, with English and Russian summaries); English transl., Proc. Steklov Inst. Math. 3(234) (2001), 1–362. MR 1879326
- 12.
E. MITIDIERI, S.I. POHOZAEV, Positivity property of solutions of some elliptic inequalities on
, Doklady Math. 68 (2003), 339-344.
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35H10, 35C15, 26D10
Retrieve articles in all journals with MSC (2000): 35H10, 35C15, 26D10
Additional Information
Lorenzo D'Ambrosio
Affiliation:
Dipartimento di Matematica, via E. Orabona 4, Università degli Studi di Bari, I-70125 Bari, Italy
Email:
dambros@dm.uniba.it
Enzo Mitidieri
Affiliation:
Dipartimento di Scienze Matematiche, via A. Valerio 12/1, Università degli Studi di Trieste, I-34127 Trieste, Italy
Email:
mitidier@units.it
Stanislav I. Pohozaev
Affiliation:
Steklov Institute of Mathematics, Gubkina Str. 8, 117966 Moscow, Russia
Email:
pohozaev@mi.ras.ru
DOI:
https://doi.org/10.1090/S0002-9947-05-03717-7
Received by editor(s):
April 19, 2004
Published electronically:
April 22, 2005
Article copyright:
© Copyright 2005
American Mathematical Society