## Duality for Hopf orders

HTML articles powered by AMS MathViewer

- by Robert G. Underwood and Lindsay N. Childs PDF
- Trans. Amer. Math. Soc.
**358**(2006), 1117-1163 Request permission

## Abstract:

In this paper we use duality to construct new classes of Hopf orders in the group algebra $KC_{p^3}$, where $K$ is a finite extension of $\mathbb {Q}_p$ and $C_{p^3}$ denotes the cyclic group of order $p^3$. Included in this collection is a subcollection of Hopf orders which are realizable as Galois groups.## References

- N. P. Byott,
*Cleft extensions of Hopf algebras. II*, Proc. London Math. Soc. (3)**67**(1993), no. 2, 277–304. MR**1226603**, DOI 10.1112/plms/s3-67.2.277 - Nigel P. Byott,
*Integral Hopf-Galois structures on degree $p^2$ extensions of $p$-adic fields*, J. Algebra**248**(2002), no. 1, 334–365. MR**1879021**, DOI 10.1006/jabr.2001.9053 - Nigel P. Byott,
*Monogenic Hopf orders and associated orders of valuation rings*, J. Algebra**275**(2004), no. 2, 575–599. MR**2052627**, DOI 10.1016/j.jalgebra.2003.07.003 - Lindsay N. Childs,
*Hopf Galois structures on degree $p^2$ cyclic extensions of local fields*, New York J. Math.**2**(1996), 86–102. MR**1420597** - Lindsay N. Childs, Cornelius Greither, David J. Moss, Jim Sauerberg, and Karl Zimmermann,
*Hopf algebras, polynomial formal groups, and Raynaud orders*, Mem. Amer. Math. Soc.**136**(1998), no. 651, viii+118. MR**1629460**, DOI 10.1090/memo/0651 - Lindsay N. Childs,
*Taming wild extensions: Hopf algebras and local Galois module theory*, Mathematical Surveys and Monographs, vol. 80, American Mathematical Society, Providence, RI, 2000. MR**1767499**, DOI 10.1090/surv/080 - Lindsay N. Childs, Cornelius Greither, David J. Moss, Jim Sauerberg, and Karl Zimmermann,
*Hopf algebras, polynomial formal groups, and Raynaud orders*, Mem. Amer. Math. Soc.**136**(1998), no. 651, viii+118. MR**1629460**, DOI 10.1090/memo/0651 - Lindsay N. Childs, Cornelius Greither, David J. Moss, Jim Sauerberg, and Karl Zimmermann,
*Hopf algebras, polynomial formal groups, and Raynaud orders*, Mem. Amer. Math. Soc.**136**(1998), no. 651, viii+118. MR**1629460**, DOI 10.1090/memo/0651 - Lindsay N. Childs, Cornelius Greither, David J. Moss, Jim Sauerberg, and Karl Zimmermann,
*Hopf algebras, polynomial formal groups, and Raynaud orders*, Mem. Amer. Math. Soc.**136**(1998), no. 651, viii+118. MR**1629460**, DOI 10.1090/memo/0651 - Lindsay N. Childs and Robert G. Underwood,
*Cyclic Hopf orders defined by isogenies of formal groups*, Amer. J. Math.**125**(2003), no. 6, 1295–1334. MR**2018662**, DOI 10.1353/ajm.2003.0039 - Lindsay N. Childs and Karl Zimmermann,
*Congruence-torsion subgroups of dimension one formal groups*, J. Algebra**170**(1994), no. 3, 929–955. MR**1305271**, DOI 10.1006/jabr.1994.1371 - C. Greither,
*Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring*, Math. Z.**210**(1992), no. 1, 37–67. MR**1161169**, DOI 10.1007/BF02571782 - Lindsay N. Childs, Cornelius Greither, David J. Moss, Jim Sauerberg, and Karl Zimmermann,
*Hopf algebras, polynomial formal groups, and Raynaud orders*, Mem. Amer. Math. Soc.**136**(1998), no. 651, viii+118. MR**1629460**, DOI 10.1090/memo/0651 - Richard Gustavus Larson,
*Hopf algebra orders determined by group valuations*, J. Algebra**38**(1976), no. 2, 414–452. MR**404413**, DOI 10.1016/0021-8693(76)90232-5 - Jonathan Lubin,
*Canonical subgroups of formal groups*, Trans. Amer. Math. Soc.**251**(1979), 103–127. MR**531971**, DOI 10.1090/S0002-9947-1979-0531971-4 - H. Smith, Constructing Hopf orders in elementary abelian group rings, doctoral dissertation, SUNY Albany (1997).
- Tsutomu Sekiguchi and Noriyuki Suwa,
*Théories de Kummer-Artin-Schreier-Witt*, C. R. Acad. Sci. Paris Sér. I Math.**319**(1994), no. 2, 105–110 (French, with English and French summaries). MR**1288386**, DOI 10.2748/tmj/1178207479 - John Tate and Frans Oort,
*Group schemes of prime order*, Ann. Sci. École Norm. Sup. (4)**3**(1970), 1–21. MR**265368**, DOI 10.24033/asens.1186 - Robert G. Underwood,
*$R$-Hopf algebra orders in $KC_{p^2}$*, J. Algebra**169**(1994), no. 2, 418–440. MR**1297158**, DOI 10.1006/jabr.1994.1293 - Robert Underwood,
*The valuative condition and $R$-Hopf algebra orders in $KC_{p^3}$*, Amer. J. Math.**118**(1996), no. 4, 701–743. MR**1400057**, DOI 10.1353/ajm.1996.0036 - Robert Underwood,
*The structure and realizability of $R$-Hopf algebra orders in $KC_{p^3}$*, Comm. Algebra**26**(1998), no. 11, 3447–3462. MR**1647146**, DOI 10.1080/00927879808826352 - Robert Underwood,
*Isogenies of polynomial formal groups*, J. Algebra**212**(1999), no. 2, 428–459. MR**1676848**, DOI 10.1006/jabr.1998.7642 - Robert G. Underwood,
*Galois module theory over a discrete valuation ring*, Recent research on pure and applied algebra, Nova Sci. Publ., Hauppauge, NY, 2003, pp. 23–45. MR**2030462**

## Additional Information

**Robert G. Underwood**- Affiliation: Department of Mathematics, Auburn University Montgomery, Montgomery, Alabama 36124
**Lindsay N. Childs**- Affiliation: Department of Mathematics and Statistics, SUNY at Albany, Albany, New York 12222
- Received by editor(s): July 18, 2003
- Received by editor(s) in revised form: April 16, 2004
- Published electronically: April 22, 2005
- © Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**358**(2006), 1117-1163 - MSC (2000): Primary 13C05, 13E15, 16W30; Secondary 14L05, 12F10
- DOI: https://doi.org/10.1090/S0002-9947-05-03728-1
- MathSciNet review: 2187648