Contact reduction and groupoid actions
HTML articles powered by AMS MathViewer
- by Marco Zambon and Chenchang Zhu PDF
- Trans. Amer. Math. Soc. 358 (2006), 1365-1401 Request permission
Abstract:
We introduce a new method to perform reduction of contact manifolds that extends Willett’s and Albert’s results. To carry out our reduction procedure all we need is a complete Jacobi map $J:M \rightarrow \Gamma _0$ from a contact manifold to a Jacobi manifold. This naturally generates the action of the contact groupoid of $\Gamma _0$ on $M$, and we show that the quotients of fibers $J^{-1}(x)$ by suitable Lie subgroups $\Gamma _x$ are either contact or locally conformal symplectic manifolds with structures induced by the one on $M$. We show that Willett’s reduced spaces are prequantizations of our reduced spaces; hence the former are completely determined by the latter. Since a symplectic manifold is prequantizable iff the symplectic form is integral, this explains why Willett’s reduction can be performed only at distinguished points. As an application we obtain Kostant’s prequantizations of coadjoint orbits. Finally we present several examples where we obtain classical contact manifolds as reduced spaces.References
- Claude Albert, Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact, J. Geom. Phys. 6 (1989), no. 4, 627–649 (French, with English summary). MR 1076705, DOI 10.1016/0393-0440(89)90029-6
- Henrique Bursztyn, Marius Crainic, Alan Weinstein, and Chenchang Zhu, Integration of twisted Dirac brackets, Duke Math. J. 123 (2004), no. 3, 549–607. MR 2068969, DOI 10.1215/S0012-7094-04-12335-8
- David E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, vol. 203, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1874240, DOI 10.1007/978-1-4757-3604-5
- Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1995. Translated from the German manuscript; Corrected reprint of the 1985 translation. MR 1410059
- Ana Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, vol. 1764, Springer-Verlag, Berlin, 2001. MR 1853077, DOI 10.1007/978-3-540-45330-7
- Ana Cannas da Silva and Alan Weinstein, Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, vol. 10, American Mathematical Society, Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999. MR 1747916
- A. Coste, P. Dazord, and A. Weinstein, Groupoïdes symplectiques, Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, Publ. Dép. Math. Nouvelle Sér. A, vol. 87, Univ. Claude-Bernard, Lyon, 1987, pp. i–ii, 1–62 (French). MR 996653
- Marius Crainic and Chenchang Zhu, Integrability of Jacobi structures, arXiv:math.DG/0403268.
- Pierre Dazord, Sur l’intégration des algèbres de Lie locales et la préquantification, Bull. Sci. Math. 121 (1997), no. 6, 423–462 (French, with English summary). MR 1477794
- Manuel de León, Belén López, Juan C. Marrero, and Edith Padrón, On the computation of the Lichnerowicz-Jacobi cohomology, J. Geom. Phys. 44 (2003), no. 4, 507–522. MR 1943175, DOI 10.1016/S0393-0440(02)00056-6
- Victor Guillemin, Viktor Ginzburg, and Yael Karshon, Moment maps, cobordisms, and Hamiltonian group actions, Mathematical Surveys and Monographs, vol. 98, American Mathematical Society, Providence, RI, 2002. Appendix J by Maxim Braverman. MR 1929136, DOI 10.1090/surv/098
- A. A. Kirillov, Local Lie algebras, Uspehi Mat. Nauk 31 (1976), no. 4(190), 57–76 (Russian). MR 0438390
- Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in modern analysis and applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, pp. 87–208. MR 0294568
- Yvan Kerbrat and Zoubida Souici-Benhammadi, Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 1, 81–86 (French, with English and French summaries). MR 1228970
- André Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. (9) 57 (1978), no. 4, 453–488 (French). MR 524629
- I. Moerdijk and J. Mrčun, Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge, 2003. MR 2012261, DOI 10.1017/CBO9780511615450
- Jerrold Marsden and Alan Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), no. 1, 121–130. MR 402819, DOI 10.1016/0034-4877(74)90021-4
- Kentaro Mikami and Alan Weinstein, Moments and reduction for symplectic groupoids, Publ. Res. Inst. Math. Sci. 24 (1988), no. 1, 121–140. MR 944869, DOI 10.2977/prims/1195175328
- Richard Schoen and Jon Wolfson, Minimizing volume among Lagrangian submanifolds, Differential equations: La Pietra 1996 (Florence), Proc. Sympos. Pure Math., vol. 65, Amer. Math. Soc., Providence, RI, 1999, pp. 181–199. MR 1662755, DOI 10.1090/pspum/065/1662755
- Izu Vaisman, Lectures on the geometry of Poisson manifolds, Progress in Mathematics, vol. 118, Birkhäuser Verlag, Basel, 1994. MR 1269545, DOI 10.1007/978-3-0348-8495-2
- Christopher Willett, Contact reduction, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4245–4260. MR 1926873, DOI 10.1090/S0002-9947-02-03045-3
- Ping Xu, Morita equivalence of Poisson manifolds, Comm. Math. Phys. 142 (1991), no. 3, 493–509. MR 1138048, DOI 10.1007/BF02099098
Additional Information
- Marco Zambon
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- Address at time of publication: Institut für Mathematik, Universität Zürich-Irchel, 8057 Zürich, Switzerland
- Email: zambon@math.unizh.ch
- Chenchang Zhu
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- Address at time of publication: D-MATH, ETH-Zentrum, CH-8092 Zürich, Switzerland
- Email: zhu@math.ethz.ch
- Received by editor(s): May 25, 2004
- Published electronically: June 21, 2005
- © Copyright 2005 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 358 (2006), 1365-1401
- MSC (2000): Primary 53D10, 53D20, 58H05
- DOI: https://doi.org/10.1090/S0002-9947-05-03832-8
- MathSciNet review: 2187657