Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces
HTML articles powered by AMS MathViewer
- by Marcin Bownik and Kwok-Pun Ho PDF
- Trans. Amer. Math. Soc. 358 (2006), 1469-1510 Request permission
Abstract:
Weighted anisotropic Triebel-Lizorkin spaces are introduced and studied with the use of discrete wavelet transforms. This study extends the isotropic methods of dyadic $\varphi$-transforms of Frazier and Jawerth (1985, 1989) to non-isotropic settings associated with general expansive matrix dilations and $A_\infty$ weights. In close analogy with the isotropic theory, we show that weighted anisotropic Triebel-Lizorkin spaces are characterized by the magnitude of the $\varphi$-transforms in appropriate sequence spaces. We also introduce non-isotropic analogues of the class of almost diagonal operators and we obtain atomic and molecular decompositions of these spaces, thus extending isotropic results of Frazier and Jawerth.References
- Kenneth F. Andersen and Russel T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980/81), no. 1, 19–31. MR 604351, DOI 10.4064/sm-69-1-19-31
- M. Z. Berkolaĭko and I. Ya. Novikov, Unconditional bases in spaces of functions of anisotropic smoothness, Trudy Mat. Inst. Steklov. 204 (1993), no. Issled. po Teor. Differ. Funktsiĭ Mnogikh Peremen. i ee Prilozh. 16, 35–51 (Russian); English transl., Proc. Steklov Inst. Math. 3(204) (1994), 27–41. MR 1320017
- M. Z. Berkolaĭko and I. Ya. Novikov, Wavelet bases and linear operators in anisotropic Lizorkin-Triebel spaces, Dokl. Akad. Nauk 340 (1995), no. 5, 583–586 (Russian). MR 1327833
- Oleg V. Besov, Valentin P. Il′in, and Sergey M. Nikol′skiĭ, Integral representations of functions and imbedding theorems. Vol. I, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto, Ont.-London, 1978. Translated from the Russian; Edited by Mitchell H. Taibleson. MR 519341
- Marcin Bownik, A characterization of affine dual frames in $L^2(\mathbf R^n)$, Appl. Comput. Harmon. Anal. 8 (2000), no. 2, 203–221. MR 1743536, DOI 10.1006/acha.2000.0284
- Marcin Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003), no. 781, vi+122. MR 1982689, DOI 10.1090/memo/0781
- M. Bownik, Atomic and Molecular Decompositions of Anisotropic Besov Spaces, Math. Z. (to appear).
- Bui Huy Qui, Weighted Besov and Triebel spaces: interpolation by the real method, Hiroshima Math. J. 12 (1982), no. 3, 581–605. MR 676560
- Huy-Qui Bui, Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures, J. Funct. Anal. 55 (1984), no. 1, 39–62. MR 733032, DOI 10.1016/0022-1236(84)90017-X
- Huy-Qui Bui, Weighted Young’s inequality and convolution theorems on weighted Besov spaces, Math. Nachr. 170 (1994), 25–37. MR 1302364, DOI 10.1002/mana.19941700104
- H.-Q. Bui, M. Paluszyński, and M. H. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces, Studia Math. 119 (1996), no. 3, 219–246. MR 1397492
- H.-Q. Bui, M. Paluszyński, and M. Taibleson, Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The case $q<1$, Proceedings of the conference dedicated to Professor Miguel de Guzmán (El Escorial, 1996), 1997, pp. 837–846. MR 1600199, DOI 10.1007/BF02656489
- Alberto-P. Calderón, An atomic decomposition of distributions in parabolic $H^{p}$ spaces, Advances in Math. 25 (1977), no. 3, 216–225. MR 448066, DOI 10.1016/0001-8708(77)90074-3
- A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1–64. MR 417687, DOI 10.1016/0001-8708(75)90099-7
- A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Advances in Math. 24 (1977), no. 2, 101–171. MR 450888, DOI 10.1016/S0001-8708(77)80016-9
- Charles K. Chui, Wojciech Czaja, Mauro Maggioni, and Guido Weiss, Characterization of general tight wavelet frames with matrix dilations and tightness preserving oversampling, J. Fourier Anal. Appl. 8 (2002), no. 2, 173–200. MR 1891728, DOI 10.1007/s00041-002-0007-4
- Ronald R. Coifman, A real variable characterization of $H^{p}$, Studia Math. 51 (1974), 269–274. MR 358318, DOI 10.4064/sm-51-3-269-274
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- H. Dappa and W. Trebels, On anisotropic Besov and Bessel potential spaces, Approximation and function spaces (Warsaw, 1986) Banach Center Publ., vol. 22, PWN, Warsaw, 1989, pp. 69–87. MR 1097182
- Walter Farkas, Atomic and subatomic decompositions in anisotropic function spaces, Math. Nachr. 209 (2000), 83–113. MR 1734360, DOI 10.1002/(SICI)1522-2616(200001)209:1<83::AID-MANA83>3.3.CO;2-T
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 657581
- Michael Frazier and Björn Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), no. 4, 777–799. MR 808825, DOI 10.1512/iumj.1985.34.34041
- Michael Frazier and Björn Jawerth, The $\phi$-transform and applications to distribution spaces, Function spaces and applications (Lund, 1986) Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 223–246. MR 942271, DOI 10.1007/BFb0078877
- Michael Frazier and Björn Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. MR 1070037, DOI 10.1016/0022-1236(90)90137-A
- Michael Frazier, Björn Jawerth, and Guido Weiss, Littlewood-Paley theory and the study of function spaces, CBMS Regional Conference Series in Mathematics, vol. 79, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991. MR 1107300, DOI 10.1090/cbms/079
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Ioseb Genebashvili, Amiran Gogatishvili, Vakhtang Kokilashvili, and Miroslav Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 92, Longman, Harlow, 1998. MR 1791462
- J. E. Gilbert, Y. S. Han, J. A. Hogan, J. D. Lakey, D. Weiland, and G. Weiss, Smooth molecular decompositions of functions and singular integral operators, Mem. Amer. Math. Soc. 156 (2002), no. 742, viii+74. MR 1880991, DOI 10.1090/memo/0742
- K.-P. Ho, Anisotropic Function spaces, Ph.D. Dissertation, Washington University (2002).
- Pierre-Gilles Lemarié-Rieusset, Projecteurs invariants, matrices de dilatation, ondelettes et analyses multi-résolutions, Rev. Mat. Iberoamericana 10 (1994), no. 2, 283–347 (French, with English and French summaries). MR 1286477, DOI 10.4171/RMI/153
- Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. MR 1228209
- Yves Meyer and Ronald Coifman, Wavelets, Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge, 1997. Calderón-Zygmund and multilinear operators; Translated from the 1990 and 1991 French originals by David Salinger. MR 1456993
- Jaak Peetre, New thoughts on Besov spaces, Duke University Mathematics Series, No. 1, Duke University, Mathematics Department, Durham, N.C., 1976. MR 0461123
- Andreas Seeger, A note on Triebel-Lizorkin spaces, Approximation and function spaces (Warsaw, 1986) Banach Center Publ., vol. 22, PWN, Warsaw, 1989, pp. 391–400. MR 1097208
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- H.-J. Schmeisser and H. Triebel, Topics in Fourier analysis and function spaces, Mathematik und ihre Anwendungen in Physik und Technik [Mathematics and its Applications in Physics and Technology], vol. 42, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987. MR 900143
- Jan-Olov Strömberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, Berlin, 1989. MR 1011673, DOI 10.1007/BFb0091154
- W. Szlenk, An introduction to the theory of smooth dynamical systems, PWN—Polish Scientific Publishers, Warsaw; John Wiley & Sons, Inc., New York, 1984. Translated from the Polish by Marcin E. Kuczma. MR 791919
- Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. MR 781540, DOI 10.1007/978-3-0346-0416-1
- Hans Triebel, Theory of function spaces. II, Monographs in Mathematics, vol. 84, Birkhäuser Verlag, Basel, 1992. MR 1163193, DOI 10.1007/978-3-0346-0419-2
Additional Information
- Marcin Bownik
- Affiliation: Department of Mathematics, University of Michigan, 525 East University Ave., Ann Arbor, Michigan 48109
- Address at time of publication: Department of Mathematics, University of Oregon, Eugene, Oregon 97403–1222
- MR Author ID: 629092
- Email: mbownik@uoregon.edu
- Kwok-Pun Ho
- Affiliation: Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
- MR Author ID: 723414
- Email: makho@ust.hk
- Received by editor(s): April 16, 2003
- Received by editor(s) in revised form: March 8, 2004
- Published electronically: March 25, 2005
- Additional Notes: The first author was partially supported by NSF grant DMS-0200080
The authors thank Michael Frazier for careful reading and several suggestions for improvement of the paper, and Guido Weiss for making this joint work possible - © Copyright 2005 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 358 (2006), 1469-1510
- MSC (2000): Primary 42B25, 42B35, 42C40; Secondary 46E35, 47B37, 47B38
- DOI: https://doi.org/10.1090/S0002-9947-05-03660-3
- MathSciNet review: 2186983