Algebra of dimension theory
HTML articles powered by AMS MathViewer
- by Jerzy Dydak PDF
- Trans. Amer. Math. Soc. 358 (2006), 1537-1561 Request permission
Abstract:
The dimension algebra of graded groups is introduced. With the help of known geometric results of extension theory, this algebra induces all known results of the cohomological dimension theory. Elements of the algebra are equivalence classes $\dim (A)$ of graded groups $A$. There are two geometric interpretations of these equivalence classes: 1) For pointed CW complexes $K$ and $L$, $\dim (H_\ast (K))=\dim (H_\ast (L))$ if and only if the infinite symmetric products $SP(K)$ and $SP(L)$ are of the same extension type (i.e., $SP(K)\in AE(X)$ iff $SP(L)\in AE(X)$ for all compact $X$). 2) For pointed compact spaces $X$ and $Y$, $\dim (\mathcal {H}^{-\ast }(X))=\dim (\mathcal {H}^{-\ast }(Y))$ if and only if $X$ and $Y$ are of the same dimension type (i.e., $\dim _G(X)=\dim _G(Y)$ for all Abelian groups $G$).
Dranishnikov’s version of the Hurewicz Theorem in extension theory becomes $\dim (\pi _\ast (K))=\dim (H_\ast (K))$ for all simply connected $K$.
The concept of cohomological dimension $\dim _A(X)$ of a pointed compact space $X$ with respect to a graded group $A$ is introduced. It turns out $\dim _A(X) \leq 0$ iff $\dim _{A(n)}(X)\leq n$ for all $n\in \mathbf {Z}$. If $A$ and $B$ are two positive graded groups, then $\dim (A)=\dim (B)$ if and only if $\dim _A(X)=\dim _B(X)$ for all compact $X$.
References
- Marcelo Aguilar, Samuel Gitler, and Carlos Prieto, Algebraic topology from a homotopical viewpoint, Universitext, Springer-Verlag, New York, 2002. Translated from the Spanish by Stephen Bruce Sontz. MR 1908260, DOI 10.1007/b97586
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- M. Cencelj and A. N. Dranishnikov, Extension of maps to nilpotent spaces. II, Topology Appl. 124 (2002), no. 1, 77–83. MR 1926136, DOI 10.1016/S0166-8641(01)00239-5
- A. N. Dranishnikov, On intersection of compacta in Euclidean space. II, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1149–1154. MR 1060721, DOI 10.1090/S0002-9939-1991-1060721-1
- A. N. Dranishnikov, On the mapping intersection problem, Pacific J. Math. 173 (1996), no. 2, 403–412. MR 1394397
- A. N. Dranishnikov, Extension of mappings into CW-complexes, Mat. Sb. 182 (1991), no. 9, 1300–1310 (Russian); English transl., Math. USSR-Sb. 74 (1993), no. 1, 47–56. MR 1133570, DOI 10.1070/SM1993v074n01ABEH003333
- A. N. Dranishnikov, On the dimension of the product of two compacta and the dimension of their intersection in general position in Euclidean space, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5599–5618. MR 1781276, DOI 10.1090/S0002-9947-00-02684-2
- A. N. Dranishnikov, Basic elements of the cohomological dimension theory of compact metric spaces (1999).
- A. Dranishnikov and J. Dydak, Extension dimension and extension types, Tr. Mat. Inst. Steklova 212 (1996), no. Otobrazh. i Razmer., 61–94; English transl., Proc. Steklov Inst. Math. 1(212) (1996), 55–88. MR 1635023
- Alexander Dranishnikov and Jerzy Dydak, Extension theory of separable metrizable spaces with applications to dimension theory, Trans. Amer. Math. Soc. 353 (2001), no. 1, 133–156. MR 1694287, DOI 10.1090/S0002-9947-00-02536-8
- Jerzy Dydak, Cohomological dimension and metrizable spaces. II, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1647–1661. MR 1333390, DOI 10.1090/S0002-9947-96-01536-X
- Jerzy Dydak, Realizing dimension functions via homology, Topology Appl. 65 (1995), no. 1, 1–7. MR 1354376, DOI 10.1016/0166-8641(94)00105-C
- J. Dydak, Extension theory of infinite symmetric products, Fundamenta Mathematicae, to appear.
- Peter Hilton, Guido Mislin, and Joe Roitberg, Localization of nilpotent groups and spaces, North-Holland Mathematics Studies, No. 15, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0478146
- W. Krull, Allgemeine Bewertungstheorie, J.Reine Angew. Math 167 (1931), 160–196.
- V. I. Kuz′minov, Homological dimension theory, Uspehi Mat. Nauk 23 (1968), no. 5 (143), 3–49 (Russian). MR 0240813
- Joseph Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc. 25 (1980), no. 232, iv+67. MR 567801, DOI 10.1090/memo/0232
- Wojciech Olszewski, Completion theorem for cohomological dimensions, Proc. Amer. Math. Soc. 123 (1995), no. 7, 2261–2264. MR 1307554, DOI 10.1090/S0002-9939-1995-1307554-X
- E. V. Shchepin, Arithmetic of dimension theory, Uspekhi Mat. Nauk 53 (1998), no. 5(323), 115–212 (Russian); English transl., Russian Math. Surveys 53 (1998), no. 5, 975–1069. MR 1691185, DOI 10.1070/rm1998v053n05ABEH000072
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
- Dennis Sullivan, Geometric topology. Part I, Massachusetts Institute of Technology, Cambridge, Mass., 1971. Localization, periodicity, and Galois symmetry; Revised version. MR 0494074
Additional Information
- Jerzy Dydak
- Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300
- Email: dydak@math.utk.edu
- Received by editor(s): August 14, 2001
- Received by editor(s) in revised form: April 12, 2004
- Published electronically: April 22, 2005
- Additional Notes: This research was supported in part by grant DMS-0072356 from the National Science Foundation
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 1537-1561
- MSC (2000): Primary 54F45, 55M10, 55N99, 55Q40, 55P20
- DOI: https://doi.org/10.1090/S0002-9947-05-03690-1
- MathSciNet review: 2186985