Stable geometric dimension of vector bundles over even-dimensional real projective spaces
HTML articles powered by AMS MathViewer
- by Martin Bendersky, Donald M. Davis and Mark Mahowald PDF
- Trans. Amer. Math. Soc. 358 (2006), 1585-1603 Request permission
Abstract:
In 1981, Davis, Gitler, and Mahowald determined the geometric dimension of stable vector bundles of order $2^e$ over $RP^{n}$ if $n$ is even and sufficiently large and $e\ge 75$. In this paper, we use the Bendersky-Davis computation of $v_1^{-1}\pi _*(SO(m))$ to show that the 1981 result extends to all $e\ge 5$ (still provided that $n$ is sufficiently large). If $e\le 4$, the result is often different due to anomalies in the formula for $v_1^{-1}\pi _*(SO(m))$ when $m\le 8$, but we also determine the stable geometric dimension in these cases.References
- J. F. Adams, Geometric dimension of bundles over $RP^{n}$, Proceedings of the International Conference on Prospects in Mathematics (Taniguchi Internat. Sympos., Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1973), Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1974, pp.Β 1β17. MR 0482761
- Martin Bendersky and Donald M. Davis, $v_1$-periodic homotopy groups of $\textrm {SO}(n)$, Mem. Amer. Math. Soc. 172 (2004), no.Β 815, viii+90. MR 2096862, DOI 10.1090/memo/0815
- Martin Bendersky and Donald M. Davis, $2$-primary $v_1$-periodic homotopy groups of $\textrm {SU}(n)$, Amer. J. Math. 114 (1992), no.Β 3, 465β494. MR 1165351, DOI 10.2307/2374767
- Martin Bendersky and Donald M. Davis, The 1-line of the $K$-theory Bousfield-Kan spectral sequence for $\textrm {Spin}(2n+1)$, Topology, geometry, and algebra: interactions and new directions (Stanford, CA, 1999) Contemp. Math., vol. 279, Amer. Math. Soc., Providence, RI, 2001, pp.Β 37β56. MR 1850740, DOI 10.1090/conm/279/04553
- Martin Bendersky, Donald M. Davis, and Mark Mahowald, $v_1$-periodic homotopy groups of $\textrm {Sp}(n)$, Pacific J. Math. 170 (1995), no.Β 2, 319β378. MR 1363868
- A. K. Bousfield, The $K$-theory localizations and $v_1$-periodic homotopy groups of $H$-spaces, Topology 38 (1999), no.Β 6, 1239β1264. MR 1690156, DOI 10.1016/S0040-9383(98)00052-4
- A. K. Bousfield, A classification of $K$-local spectra, J. Pure Appl. Algebra 66 (1990), no.Β 2, 121β163. MR 1075335, DOI 10.1016/0022-4049(90)90082-S
- A. K. Bousfield, On the 2-primary $v_1$-periodic homotopy groups of spaces, Topology 44 (2005), no.Β 2, 381β413. MR 2114954, DOI 10.1016/j.top.2004.10.003
- Donald M. Davis, Computing $v_1$-periodic homotopy groups of spheres and some compact Lie groups, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp.Β 993β1048. MR 1361905, DOI 10.1016/B978-044481779-2/50021-3
- Donald M. Davis, A strong nonimmersion theorem for real projective spaces, Ann. of Math. (2) 120 (1984), no.Β 3, 517β528. MR 769162, DOI 10.2307/1971086
- Donald Davis, Generalized homology and the generalized vector field problem, Quart. J. Math. Oxford Ser. (2) 25 (1974), 169β193. MR 356053, DOI 10.1093/qmath/25.1.169
- Donald M. Davis, Sam Gitler, and Mark Mahowald, The stable geometric dimension of vector bundles over real projective spaces, Trans. Amer. Math. Soc. 268 (1981), no.Β 1, 39β61. MR 628445, DOI 10.1090/S0002-9947-1981-0628445-8
- Donald M. Davis, Sam Gitler, and Mark Mahowald, Correction to: βThe stable geometric dimension of vector bundles over real projective spacesβ [Trans. Amer. Math. Soc. 268 (1981), no. 1, 39β61; MR0628445 (83c:55006)], Trans. Amer. Math. Soc. 280 (1983), no.Β 2, 841β843. MR 716854, DOI 10.1090/S0002-9947-1983-0716854-X
- Donald M. Davis and Mark Mahowald, Homotopy groups of some mapping telescopes, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp.Β 126β151. MR 921475
- Donald M. Davis and Mark Mahowald, Some remarks on $v_1$-periodic homotopy groups, Adams Memorial Symposium on Algebraic Topology, 2 (Manchester, 1990) London Math. Soc. Lecture Note Ser., vol. 176, Cambridge Univ. Press, Cambridge, 1992, pp.Β 55β72. MR 1232199, DOI 10.1017/CBO9780511526312.011
- Donald M. Davis and Mark Mahowald, The image of the stable $J$-homomorphism, Topology 28 (1989), no.Β 1, 39β58. MR 991098, DOI 10.1016/0040-9383(89)90031-1
- Donald M. Davis and Mark Mahowald, $v_1$-periodic homotopy of $\textrm {Sp}(2), \textrm {Sp}(3),$ and $S^{2n}$, Homotopy theory and related topics (Kinosaki, 1988) Lecture Notes in Math., vol. 1418, Springer, Berlin, 1990, pp.Β 219β237. MR 1048189, DOI 10.1007/BFb0083706
- S. Feder and W. Iberkleid, Secondary operations in $K$-theory and the generalized vector field problem, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Lecture Notes in Math., Vol. 597, Springer, Berlin, 1977, pp.Β 161β175. MR 0451244
- Michael J. Hopkins and Jeffrey H. Smith, Nilpotence and stable homotopy theory. II, Ann. of Math. (2) 148 (1998), no.Β 1, 1β49. MR 1652975, DOI 10.2307/120991
- K. Y. Lam, e-mail, May 3, 2004.
- Kee Yuen Lam, $K\textrm {O}$-equivalences and existence of nonsingular bilinear maps, Pacific J. Math. 82 (1979), no.Β 1, 145β154. MR 549839
- Kee Yuen Lam and Duane Randall, Geometric dimension of bundles on real projective spaces, Homotopy theory and its applications (Cocoyoc, 1993) Contemp. Math., vol. 188, Amer. Math. Soc., Providence, RI, 1995, pp.Β 137β160. MR 1349135, DOI 10.1090/conm/188/02239
- Kee Yuen Lam and Duane Randall, Periodicity of geometric dimension for real projective spaces, Algebraic topology: new trends in localization and periodicity (Sant Feliu de GuΓxols, 1994) Progr. Math., vol. 136, BirkhΓ€user, Basel, 1996, pp.Β 223β234. MR 1397733
- β, Vector bundles of low geometric dimension over real projective spaces, preprint, January 2004.
- K. Y. Lam and D. Randall, Low-dimensional spinor representations, Adams maps and geometric dimension, Adams Memorial Symposium on Algebraic Topology, 1 (Manchester, 1990) London Math. Soc. Lecture Note Ser., vol. 175, Cambridge Univ. Press, Cambridge, 1992, pp.Β 89β102. MR 1170573, DOI 10.1017/CBO9780511526305.008
- Mark Mahowald, The image of $J$ in the $EHP$ sequence, Ann. of Math. (2) 116 (1982), no.Β 1, 65β112. MR 662118, DOI 10.2307/2007048
Additional Information
- Martin Bendersky
- Affiliation: Department of Mathematics & Statistics, Hunter College, CUNY, New York, New York 10021
- Email: mbenders@shiva.hunter.cuny.edu
- Donald M. Davis
- Affiliation: Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015
- MR Author ID: 55085
- Email: dmd1@lehigh.edu
- Mark Mahowald
- Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
- Email: mark@math.northwestern.edu
- Received by editor(s): September 26, 2003
- Received by editor(s) in revised form: May 20, 2004
- Published electronically: May 26, 2005
- © Copyright 2005 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 358 (2006), 1585-1603
- MSC (2000): Primary 55S40, 55R50, 55T15
- DOI: https://doi.org/10.1090/S0002-9947-05-03736-0
- MathSciNet review: 2186987