Height uniformity for integral points on elliptic curves
HTML articles powered by AMS MathViewer
- by Su-ion Ih PDF
- Trans. Amer. Math. Soc. 358 (2006), 1657-1675 Request permission
Abstract:
We recall the result of D. Abramovich and its generalization by P. Pacelli on the uniformity for stably integral points on elliptic curves. It says that the Lang-Vojta conjecture on the distribution of integral points on a variety of logarithmic general type implies the uniformity for the numbers of stably integral points on elliptic curves. In this paper we will investigate its analogue for their heights under the assumption of the Vojta conjecture. Basically, we will show that the Vojta conjecture gives a naturally expected simple uniformity for their heights.References
- Dan Abramovich, Uniformité des points rationnels des courbes algébriques sur les extensions quadratiques et cubiques, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 6, 755–758 (French, with English and French summaries). MR 1354720
- Dan Abramovich, Uniformity of stably integral points on elliptic curves, Invent. Math. 127 (1997), no. 2, 307–317. MR 1427620, DOI 10.1007/s002220050121
- Dan Abramovich and Joe Harris, Abelian varieties and curves in $W_d(C)$, Compositio Math. 78 (1991), no. 2, 227–238. MR 1104789
- V. V. Batyrev and Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann. 286 (1990), no. 1-3, 27–43 (French). MR 1032922, DOI 10.1007/BF01453564
- Gregory S. Call and Joseph H. Silverman, Canonical heights on varieties with morphisms, Compositio Math. 89 (1993), no. 2, 163–205. MR 1255693
- Lucia Caporaso, Joe Harris, and Barry Mazur, Uniformity of rational points, J. Amer. Math. Soc. 10 (1997), no. 1, 1–35. MR 1325796, DOI 10.1090/S0894-0347-97-00195-1
- Gerd Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549–576. MR 1109353, DOI 10.2307/2944319
- Jens Franke, Yuri I. Manin, and Yuri Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), no. 2, 421–435. MR 974910, DOI 10.1007/BF01393904
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Joe Harris and Joe Silverman, Bielliptic curves and symmetric products, Proc. Amer. Math. Soc. 112 (1991), no. 2, 347–356. MR 1055774, DOI 10.1090/S0002-9939-1991-1055774-0
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Marc Hindry, Autour d’une conjecture de Serge Lang, Invent. Math. 94 (1988), no. 3, 575–603 (French). MR 969244, DOI 10.1007/BF01394276
- Marc Hindry and Joseph H. Silverman, Diophantine geometry, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction. MR 1745599, DOI 10.1007/978-1-4612-1210-2
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- Su-Ion Ih, Height uniformity for algebraic points on curves, Compositio Math. 134 (2002), no. 1, 35–57. MR 1931961, DOI 10.1023/A:1020246809487
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605, DOI 10.1007/978-1-4757-1810-2
- Serge Lang, Number theory. III, Encyclopaedia of Mathematical Sciences, vol. 60, Springer-Verlag, Berlin, 1991. Diophantine geometry. MR 1112552, DOI 10.1007/978-3-642-58227-1
- J. S. Milne, Jacobian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 167–212. MR 861976
- Charles F. Osgood, A number theoretic-differential equations approach to generalizing Nevanlinna theory, Indian J. Math. 23 (1981), no. 1-3, 1–15. MR 722894
- Charles F. Osgood, Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna bounds, or better, J. Number Theory 21 (1985), no. 3, 347–389. MR 814011, DOI 10.1016/0022-314X(85)90061-7
- Patricia L. Pacelli, Uniform boundedness for rational points, Duke Math. J. 88 (1997), no. 1, 77–102. MR 1448017, DOI 10.1215/S0012-7094-97-08803-7
- Patricia L. Pacelli, Uniform bounds for stably integral points on elliptic curves, Proc. Amer. Math. Soc. 127 (1999), no. 9, 2535–2546. MR 1676288, DOI 10.1090/S0002-9939-99-05429-5
- Jean-Pierre Serre, Lectures on the Mordell-Weil theorem, Aspects of Mathematics, E15, Friedr. Vieweg & Sohn, Braunschweig, 1989. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. MR 1002324, DOI 10.1007/978-3-663-14060-3
- Jean-Pierre Serre, Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, Springer-Verlag, New York, 1988. Translated from the French. MR 918564, DOI 10.1007/978-1-4612-1035-1
- Joseph H. Silverman, Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math. 342 (1983), 197–211. MR 703488, DOI 10.1515/crll.1983.342.197
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Joseph H. Silverman, Rational points on symmetric products of a curve, Amer. J. Math. 113 (1991), no. 3, 471–508. MR 1109348, DOI 10.2307/2374836
- Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368, DOI 10.1007/978-1-4612-0851-8
- Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR 883451, DOI 10.1007/BFb0072989
- Paul Vojta, Arithmetic discriminants and quadratic points on curves, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 359–376. MR 1085268, DOI 10.1007/978-1-4612-0457-2_{1}7
- Paul Vojta, Siegel’s theorem in the compact case, Ann. of Math. (2) 133 (1991), no. 3, 509–548. MR 1109352, DOI 10.2307/2944318
Additional Information
- Su-ion Ih
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602–7403
- Address at time of publication: Department of Mathematics, University of Colorado, Campus Box 395, Boulder, Colorado 80309-0395
- MR Author ID: 703039
- Email: ih@math.uga.edu
- Received by editor(s): March 6, 2004
- Received by editor(s) in revised form: June 9, 2004
- Published electronically: August 1, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 1657-1675
- MSC (2000): Primary 11G35, 11G50, 14G05
- DOI: https://doi.org/10.1090/S0002-9947-05-03760-8
- MathSciNet review: 2186991