On the Cohen-Macaulay property of multiplicative invariants
HTML articles powered by AMS MathViewer
- by Martin Lorenz PDF
- Trans. Amer. Math. Soc. 358 (2006), 1605-1617 Request permission
Abstract:
We investigate the Cohen-Macaulay property for rings of invariants under multiplicative actions of a finite group $\mathcal {G}$. By definition, these are $\mathcal {G}$-actions on Laurent polynomial algebras $\Bbbk [x_1^{\pm 1},\dots ,x_n^{\pm 1}]$ that stabilize the multiplicative group consisting of all monomials in the variables $x_i$. For the most part, we concentrate on the case where the base ring $\Bbbk$ is $\mathbb {Z}$. Our main result states that if $\mathcal {G}$ acts non-trivially and the invariant ring $\mathbb {Z}[x_1^{\pm 1},\dots ,x_n^{\pm 1}]^\mathcal {G}$ is Cohen-Macaulay, then the abelianized isotropy groups ${\mathcal {G}}_m^{\operatorname {ab}}$ of all monomials $m$ are generated by the bireflections in $\mathcal {G}_m$ and at least one ${\mathcal {G}}_m^{\operatorname {ab}}$ is non-trivial. As an application, we prove the multiplicative version of Kemper’s $3$-copies conjecture.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- N. Bourbaki, Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1308, Hermann, Paris, 1964 (French). MR 0194450
- Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1983 (French). Algèbre commutative. Chapitre 8. Dimension. Chapitre 9. Anneaux locaux noethériens complets. [Commutative algebra. Chapter 8. Dimension. Chapter 9. Complete Noetherian local rings]. MR 722608
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
- The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4; 2004, (http://www.gap-system.org).
- N. L. Gordeev, Invariants of linear groups generated by matrices with two eigenvalues different from one, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 114 (1982), 120–130, 219 (Russian). Modules and algebraic groups. MR 669563
- N. L. Gordeev, Finite linear groups whose algebra of invariants is a complete intersection, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 2, 343–392 (Russian). MR 842586
- Nikolai Gordeev and Gregor Kemper, On the branch locus of quotients by finite groups and the depth of the algebra of invariants, J. Algebra 268 (2003), no. 1, 22–38. MR 2004478, DOI 10.1016/S0021-8693(02)00572-0
- Robert M. Guralnick and Jan Saxl, Generation of finite almost simple groups by conjugates, J. Algebra 268 (2003), no. 2, 519–571. MR 2009321, DOI 10.1016/S0021-8693(03)00182-0
- M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058. MR 302643, DOI 10.2307/2373744
- W. Cary Huffman, Linear groups containing an element with an eigenspace of codimension two, J. Algebra 34 (1975), 260–287. MR 401936, DOI 10.1016/0021-8693(75)90182-9
- W. Cary Huffman and David B. Wales, Linear groups containing an element with an eigenspace of codimension two, Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) Academic Press, New York, 1976, pp. 425–429. MR 0435239
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
- Victor Kac and Keiichi Watanabe, Finite linear groups whose ring of invariants is a complete intersection, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 221–223. MR 640951, DOI 10.1090/S0273-0979-1982-14989-8
- G. Kemper, Die Cohen-Macaulay-Eigenschaft in der modularen Invariantentheorie, Habilitationsschrift, Universität Heidelberg, 1999.
- Gregor Kemper, The depth of invariant rings and cohomology, J. Algebra 245 (2001), no. 2, 463–531. With an appendix by Kay Magaard. MR 1863889, DOI 10.1006/jabr.2001.8840
- M. Lorenz, Multiplicative Invariant Theory, Encyclopaedia of Mathematical Sciences, Vol. 135, Springer-Verlag, New York, 2005.
- Martin Lorenz, Multiplicative invariants and semigroup algebras, Algebr. Represent. Theory 4 (2001), no. 3, 293–304. MR 1852001, DOI 10.1023/A:1011415025465
- M. Lorenz and J. Pathak, On Cohen-Macaulay rings of invariants, J. Algebra 245 (2001), no. 1, 247–264. MR 1868191, DOI 10.1006/jabr.2001.8900
- Haruhisa Nakajima, Quotient singularities which are complete intersections, Manuscripta Math. 48 (1984), no. 1-3, 163–187. MR 753729, DOI 10.1007/BF01169006
- J. Pathak, The Cohen-Macaulay property of multiplicative invariants, Ph.D. thesis, Temple University, 2003.
- Larry Smith, Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA, 1995. MR 1328644
- Robert Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964), 392–400. MR 167535, DOI 10.1090/S0002-9947-1964-0167535-3
- David B. Wales, Linear groups of degree $n$ containing an involution with two eigenvalues $-1$. II, J. Algebra 53 (1978), no. 1, 58–67. MR 480770, DOI 10.1016/0021-8693(78)90204-1
- Joseph A. Wolf, Spaces of constant curvature, 5th ed., Publish or Perish, Inc., Houston, TX, 1984. MR 928600
Additional Information
- Martin Lorenz
- Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
- MR Author ID: 197633
- Email: lorenz@math.temple.edu
- Received by editor(s): December 15, 2003
- Received by editor(s) in revised form: May 26, 2004
- Published electronically: June 21, 2005
- Additional Notes: This research was supported in part by NSF grant DMS-9988756
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 1605-1617
- MSC (2000): Primary 13A50, 16W22, 13C14, 13H10
- DOI: https://doi.org/10.1090/S0002-9947-05-03764-5
- MathSciNet review: 2186988