Automorphisms of Coxeter groups
HTML articles powered by AMS MathViewer
- by Patrick Bahls PDF
- Trans. Amer. Math. Soc. 358 (2006), 1781-1796 Request permission
Abstract:
We compute $\textrm {Aut}(W)$ for any even Coxeter group whose Coxeter diagram is connected, contains no edges labeled 2, and cannot be separated into more than 2 connected components by removing a single vertex. The description is given explicitly in terms of the given presentation for the Coxeter group and admits an easy characterization of those groups $W$ for which $\textrm {Out}(W)$ is finite.References
- Bahls, P., “Even rigidity in Coxeter groups”, Ph.D. Thesis, Vanderbilt University, 2002.
- Patrick Bahls, Strongly rigid even Coxeter groups, Topology Proc. 28 (2004), no. 1, 19–54. Spring Topology and Dynamical Systems Conference. MR 2105446
- Patrick Bahls and Michael Mihalik, Reflection independence in even Coxeter groups, Geom. Dedicata 110 (2005), 63–80. MR 2136020, DOI 10.1007/s10711-003-1134-z
- Bahls, P., and Mihalik, M., “Centralizers of parabolic subgroups of Coxeter groups”, preprint, 2003.
- Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981 (French). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 647314
- Ruth Charney and Michael Davis, When is a Coxeter system determined by its Coxeter group?, J. London Math. Soc. (2) 61 (2000), no. 2, 441–461. MR 1760693, DOI 10.1112/S0024610799008583
- W. N. Franzsen and R. B. Howlett, Automorphisms of Coxeter groups of rank three, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2607–2616. MR 1838783, DOI 10.1090/S0002-9939-01-05878-6
- W. N. Franzsen, Automorphisms of Coxeter groups of rank 3 with infinite bonds, J. Algebra 248 (2002), no. 1, 381–396. MR 1879023, DOI 10.1006/jabr.2001.9049
- N. D. Gilbert, Presentations of the automorphism group of a free product, Proc. London Math. Soc. (3) 54 (1987), no. 1, 115–140. MR 872253, DOI 10.1112/plms/s3-54.1.115
- R. B. Howlett, P. J. Rowley, and D. E. Taylor, On outer automorphism groups of Coxeter groups, Manuscripta Math. 93 (1997), no. 4, 499–513. MR 1465894, DOI 10.1007/BF02677488
- Lynne D. James, Complexes and Coxeter groups—operations and outer automorphisms, J. Algebra 113 (1988), no. 2, 339–345. MR 929764, DOI 10.1016/0021-8693(88)90163-9
- Levitt, G., “Automorphisms of hyperbolic groups and graphs of groups”, preprint, 2003.
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. MR 1812024, DOI 10.1007/978-3-642-61896-3
- Mihalik, M., and Tschantz, S., “Visual decompositions of Coxeter groups”, preprint, 2001.
- Bernhard Mühlherr, Automorphisms of graph-universal Coxeter groups, J. Algebra 200 (1998), no. 2, 629–649. MR 1610676, DOI 10.1006/jabr.1997.7230
- Bernhard Mühlherr and Richard Weidmann, Rigidity of skew-angled Coxeter groups, Adv. Geom. 2 (2002), no. 4, 391–415. MR 1941338, DOI 10.1515/advg.2002.018
- E. Rips and Z. Sela, Structure and rigidity in hyperbolic groups. I, Geom. Funct. Anal. 4 (1994), no. 3, 337–371. MR 1274119, DOI 10.1007/BF01896245
- Jacques Tits, Sur le groupe des automorphismes de certains groupes de Coxeter, J. Algebra 113 (1988), no. 2, 346–357 (French). MR 929765, DOI 10.1016/0021-8693(88)90164-0
Additional Information
- Patrick Bahls
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Email: pbahls@math.uiuc.edu
- Received by editor(s): May 20, 2003
- Received by editor(s) in revised form: July 9, 2004
- Published electronically: October 21, 2005
- Additional Notes: The author was supported by an NSF VIGRE postdoctoral grant.
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 1781-1796
- MSC (2000): Primary 20F28, 20F55
- DOI: https://doi.org/10.1090/S0002-9947-05-03779-7
- MathSciNet review: 2186996