On polynomial-factorial diophantine equations
HTML articles powered by AMS MathViewer
- by Daniel Berend and Jørgen E. Harmse PDF
- Trans. Amer. Math. Soc. 358 (2006), 1741-1779 Request permission
Abstract:
We study equations of the form $P(x)=n!$ and show that for some classes of polynomials $P$ the equation has only finitely many solutions. This is the case, say, if $P$ is irreducible (of degree greater than 1) or has an irreducible factor of “relatively large" degree. This is also the case if the factorization of $P$ contains some “large" power(s) of irreducible(s). For example, we can show that the equation $x^{r}(x+1)=n!$ has only finitely many solutions for $r\ge 4$, but not that this is the case for $1\le r\le 3$ (although it undoubtedly should be). We also study the equation $P(x)=H_{n}$, where $(H_{n})$ is one of several other “highly divisible" sequences, proving again that for various classes of polynomials these equations have only finitely many solutions.References
- James Ax, Solving diophantine problems modulo every prime, Ann. of Math. (2) 85 (1967), 161–183. MR 209224, DOI 10.2307/1970438
- Paul Bachmann, Niedere Zahlentheorie. Erster Teil; Zweiter Teil: Additive Zahlentheorie, Chelsea Publishing Co., New York, 1968 (German). MR 0238661
- R. C. Baker and G. Harman, The difference between consecutive primes, Proc. London Math. Soc. (3) 72 (1996), no. 2, 261–280. MR 1367079, DOI 10.1112/plms/s3-72.2.261
- R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II, Proc. London Math. Soc. (3) 83 (2001), no. 3, 532–562. MR 1851081, DOI 10.1112/plms/83.3.532
- Paul T. Bateman and Roger A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363–367. MR 148632, DOI 10.1090/S0025-5718-1962-0148632-7
- Daniel Berend, On the parity of exponents in the factorization of $n!$, J. Number Theory 64 (1997), no. 1, 13–19. MR 1450483, DOI 10.1006/jnth.1997.2106
- Daniel Berend and Yuri Bilu, Polynomials with roots modulo every integer, Proc. Amer. Math. Soc. 124 (1996), no. 6, 1663–1671. MR 1307495, DOI 10.1090/S0002-9939-96-03210-8
- Daniel Berend and Jørgen E. Harmse, On some arithmetical properties of middle binomial coefficients, Acta Arith. 84 (1998), no. 1, 31–41. MR 1613294, DOI 10.4064/aa-84-1-31-41
- Daniel Berend and Charles F. Osgood, On the equation $P(x)=n!$ and a question of Erdős, J. Number Theory 42 (1992), no. 2, 189–193. MR 1183375, DOI 10.1016/0022-314X(92)90020-P
- Bruce C. Berndt and William F. Galway, On the Brocard-Ramanujan Diophantine equation $n!+1=m^2$, Ramanujan J. 4 (2000), no. 1, 41–42. MR 1754629, DOI 10.1023/A:1009873805276
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
- H. Brocard, Question 166, Nouv. Corresp. Math. 2 (1876), 287.
- H. Brocard, Question 1532, Nouv. Ann. Math. (3)4 (1885), 391.
- J. W. S. Cassels and A. Fröhlich (eds.), Algebraic number theory, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1986. Reprint of the 1967 original. MR 911121
- H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arithmetica 2 (1937), 23–46.
- Harold Davenport, Multiplicative number theory, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. MR 606931
- Kenneth Davis and William Webb, A binomial coefficient congruence modulo prime powers, J. Number Theory 43 (1993), no. 1, 20–23. MR 1200804, DOI 10.1006/jnth.1993.1002
- Leonard Eugene Dickson, History of the theory of numbers. Vol. I: Divisibility and primality. , Chelsea Publishing Co., New York, 1966. MR 0245499
- Paul Erdős, Some new problems and results in number theory, Number theory (Mysore, 1981) Lecture Notes in Math., vol. 938, Springer, Berlin-New York, 1982, pp. 50–74. MR 665438
- P. Erdős, On some of my problems in number theory I would most like to see solved, Number theory (Ootacamund, 1984) Lecture Notes in Math., vol. 1122, Springer, Berlin, 1985, pp. 74–84. MR 797781, DOI 10.1007/BFb0075752
- P. Erdős, Some problems and results in number theory, Number theory and combinatorics. Japan 1984 (Tokyo, Okayama and Kyoto, 1984) World Sci. Publishing, Singapore, 1985, pp. 65–87. MR 827779
- P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980. MR 592420
- P. Erdős, R. L. Graham, I. Z. Ruzsa, and E. G. Straus, On the prime factors of $(^{2n}_{n})$, Math. Comp. 29 (1975), 83–92. MR 369288, DOI 10.1090/S0025-5718-1975-0369288-3
- P. Erdős and R. Obláth, Über diophantische Gleichungen der Form $n!=x^{p}\pm y^{p}$ und $n!\pm m!=x^{p}$, Acta Szeged 8 (1937), 241–255.
- M. Fried and G. Sacerdote, Solving Diophantine problems over all residue class fields of a number field and all finite fields, Ann. of Math. (2) 104 (1976), no. 2, 203–233. MR 491477, DOI 10.2307/1971045
- Harry Furstenberg, Intersections of Cantor sets and transversality of semigroups, Problems in analysis (Sympos. Salomon Bochner, Princeton Univ., Princeton, N.J., 1969) Princeton Univ. Press, Princeton, N.J., 1970, pp. 41–59. MR 0354562
- Larry Joel Goldstein, Analytic number theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0498335
- R. Graham, Personal communication.
- Richard K. Guy, Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR 656313
- R. K. Guy, Problems from Western Number Theory Conferences, 1981.
- R. K. Guy, Problems from Western Number Theory Conferences, 1982.
- G. H. Hardy and J. E. Littlewood, Some problems of ‘partitio numerorum’, III. On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1–70.
- D. R. Heath-Brown, Gaps between primes, and the pair correlation of zeros of the zeta function, Acta Arith. 41 (1982), no. 1, 85–99. MR 667711, DOI 10.4064/aa-41-1-85-99
- D. R. Heath-Brown, Sieve identities and gaps between primes, Astérisque 94 (1982), 61–65.
- D. R. Heath-Brown, The number of primes in a short interval, J. Reine Angew. Math. 389 (1988), 22–63. MR 953665, DOI 10.1515/crll.1988.389.22
- D. R. Heath-Brown and D. A. Goldston, A note on the differences between consecutive primes, Math. Ann. 266 (1984), no. 3, 317–320. MR 730173, DOI 10.1007/BF01475582
- Douglas Hensley and Ian Richards, Primes in intervals, Acta Arith. 25 (1973/74), 375–391. MR 396440, DOI 10.4064/aa-25-4-375-391
- G. Hoheisel, Primzahlprobleme in der Analysis, Sitz. Preuss. Akad. Wiss. 33 (1930), 3–11.
- Aleksandar Ivić, The Riemann zeta-function, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. The theory of the Riemann zeta-function with applications. MR 792089
- Gerald J. Janusz, Algebraic number fields, Pure and Applied Mathematics, Vol. 55, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR 0366864
- E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93–146.
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- Shi Tuo Lou and Qi Yao, A Chebychev’s type of prime number theorem in a short interval. II, Hardy-Ramanujan J. 15 (1992), 1–33 (1993). MR 1215589
- Florian Luca, The Diophantine equation $P(x)=n!$ and a result of M. Overholt, Glas. Mat. Ser. III 37(57) (2002), no. 2, 269–273. MR 1951531
- E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1(1878), 184–240, 289–321.
- E. Lucas, Question 301, Nouv. Corresp. Math. 4 (1878), 123.
- E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891.
- Takayoshi Mitsui, On the prime ideal theorem, J. Math. Soc. Japan 20 (1968), 233–247. MR 223314, DOI 10.2969/jmsj/02010233
- Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR 0337847
- J. H. Mueller, On the difference between consecutive primes, Recent progress in analytic number theory, Vol. 1 (Durham, 1979) Academic Press, London-New York, 1981, pp. 269–273. MR 637352
- Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, 2nd ed., Springer-Verlag, Berlin; PWN—Polish Scientific Publishers, Warsaw, 1990. MR 1055830
- C. Nelson, D. E. Penney and C. Pomerance, 714 and 715, J. Recreational Math. 7 (1974), 87–89.
- Marius Overholt, The Diophantine equation $n!+1=m^2$, Bull. London Math. Soc. 25 (1993), no. 2, 104. MR 1204060, DOI 10.1112/blms/25.2.104
- Richard M. Pollack and Harold N. Shapiro, The next to last case of a factorial diophantine equation, Comm. Pure Appl. Math. 26 (1973), 313–325. MR 360465, DOI 10.1002/cpa.3160260303
- Barry J. Powell, Primitive densities of certain sets of primes, J. Number Theory 12 (1980), no. 2, 210–217. MR 578814, DOI 10.1016/0022-314X(80)90055-4
- Ian Richards, On the normal density of primes in short intervals, J. Number Theory 12 (1980), no. 3, 378–384. MR 586467, DOI 10.1016/0022-314X(80)90031-1
- J. W. Sander, Prime power divisors of $\binom {2n}{n}$, J. Number Theory 39 (1991), no. 1, 65–74. MR 1123169, DOI 10.1016/0022-314X(91)90034-9
- A. Sárközy, On divisors of binomial coefficients. I, J. Number Theory 20 (1985), no. 1, 70–80. MR 777971, DOI 10.1016/0022-314X(85)90017-4
- H. G. Senge and E. G. Straus, $\textrm {PV}$-numbers and sets of multiplicity, Period. Math. Hungar. 3 (1973), 93–100. MR 340185, DOI 10.1007/BF02018464
- J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French. MR 0344216
- Daniel Shanks, On maximal gaps between successive primes, Math. Comp. 18 (1964), 646–651. MR 167472, DOI 10.1090/S0025-5718-1964-0167472-8
- A. V. Sokolovskiĭ, The distance between “neighboring” prime ideals, Dokl. Akad. Nauk SSSR 172 (1967), 1273–1275 (Russian). MR 0205947
- A. V. Sokolovskiĭ, A theorem on the zeros of Dedekind’s zeta-function and the distance between “neighboring” prime ideals, Acta Arith. 13 (1967/68), 321–334 (Russian). MR 223332
- B. L. van der Waerden, Die Seltenheit der Gleichungen mit Affekt, Math. Ann. 109 (1933), 13–16.
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
- B. F. Wyman, What is a reciprocity law?, Amer. Math. Monthly 79 (1972), 571–586; correction, ibid. 80 (1973), 281. MR 308084, DOI 10.2307/2317083
Additional Information
- Daniel Berend
- Affiliation: Departments of Mathematics and of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
- Jørgen E. Harmse
- Affiliation: Analysis and Applied Research Division, BAE Systems, Building 27-16, 6500 Tracor Lane, Austin, Texas 78725
- Received by editor(s): July 10, 2002
- Received by editor(s) in revised form: July 9, 2004
- Published electronically: October 21, 2005
- Additional Notes: The first author’s research was supported in part by the Israel Science Foundation (Grant #186/01)
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 1741-1779
- MSC (2000): Primary 11D99; Secondary 11B65
- DOI: https://doi.org/10.1090/S0002-9947-05-03780-3
- MathSciNet review: 2186995