On the correlations of directions in the Euclidean plane
HTML articles powered by AMS MathViewer
- by Florin P. Boca and Alexandru Zaharescu PDF
- Trans. Amer. Math. Soc. 358 (2006), 1797-1825 Request permission
Abstract:
Let ${\mathcal {R}}^{(\nu )}_{(x,y),Q}$ denote the repartition of the $\nu$-level correlation measure of the finite set of directions $P_{(x,y)}P$, where $P_{(x,y)}$ is the fixed point $(x,y)\in [0,1)^{2}$ and $P$ is an integer lattice point in the square $[-Q,Q]^{2}$. We show that the average of the pair correlation repartition ${\mathcal {R}}^{(2)}_{(x,y),Q}$ over $(x,y)$ in a fixed disc ${\mathbb {D}}_{0}$ converges as $Q\rightarrow \infty$. More precisely we prove, for every $\lambda \in {\mathbb {R}}_{+}$ and $0<\delta <\frac {1}{10}$, the estimate \begin{equation*} \frac {1}{\operatorname {Area} ({\mathbb {D}}_{0})} \iint _{\mathbb {D}_0} \mathcal {R}^{(2)}_{(x,y),Q} (\lambda )\, dx\, dy = \frac {2\pi \lambda }{3} + O_{\mathbb {D}_0, \lambda , \delta } (Q^{-\frac {1}{10}+\delta }) \;\; \text {as $Q\rightarrow \infty $.} \end{equation*} We also prove that for each individual point $(x,y)\in [0,1)^{2}$, the $6$-level correlation ${\mathcal {R}}^{(6)}_{(x,y),Q}(\lambda )$ diverges at any point $\lambda \in {\mathbb {R}}^{5}_{+}$ as $Q\rightarrow \infty$, and we give an explicit lower bound for the rate of divergence.References
- Volker Augustin, Florin P. Boca, Cristian Cobeli, and Alexandru Zaharescu, The $h$-spacing distribution between Farey points, Math. Proc. Cambridge Philos. Soc. 131 (2001), no. 1, 23–38. MR 1833071, DOI 10.1017/S0305004101005187
- Florin P. Boca, Cristian Cobeli, and Alexandru Zaharescu, Distribution of lattice points visible from the origin, Comm. Math. Phys. 213 (2000), no. 2, 433–470. MR 1785463, DOI 10.1007/s002200000250
- Florin P. Boca and Alexandru Zaharescu, Pair correlation of values of rational functions (mod $p$), Duke Math. J. 105 (2000), no. 2, 267–307. MR 1793613, DOI 10.1215/S0012-7094-00-10524-8
- F. P. Boca, R. N. Gologan, and A. Zaharescu, The average length of a trajectory in a certain billiard in a flat two-torus, New York J. Math. 9 (2003), 303–330. MR 2028172
- F. P. Boca, A. Zaharescu, The correlations of Farey fractions, to appear in J. London Math. Soc.
- R. R. Hall, A note on Farey series, J. London Math. Soc. (2) 2 (1970), 139–148. MR 253978, DOI 10.1112/jlms/s2-2.1.139
- Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, An introduction to the theory of numbers, 5th ed., John Wiley & Sons, Inc., New York, 1991. MR 1083765
- Zeév Rudnick and Peter Sarnak, The pair correlation function of fractional parts of polynomials, Comm. Math. Phys. 194 (1998), no. 1, 61–70. MR 1628282, DOI 10.1007/s002200050348
- Zeév Rudnick, Peter Sarnak, and Alexandru Zaharescu, The distribution of spacings between the fractional parts of $n^2\alpha$, Invent. Math. 145 (2001), no. 1, 37–57. MR 1839285, DOI 10.1007/s002220100141
- Alexandru Zaharescu, Correlation of fractional parts of $n^2\alpha$, Forum Math. 15 (2003), no. 1, 1–21. MR 1957276, DOI 10.1515/form.2003.004
Additional Information
- Florin P. Boca
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801
- Email: fboca@math.uiuc.edu
- Alexandru Zaharescu
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801
- MR Author ID: 186235
- Email: zaharesc@math.uiuc.edu
- Received by editor(s): May 4, 2004
- Received by editor(s) in revised form: July 9, 2004
- Published electronically: October 21, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 1797-1825
- MSC (2000): Primary 11J71; Secondary 11J20, 11P21
- DOI: https://doi.org/10.1090/S0002-9947-05-03783-9
- MathSciNet review: 2186997