Multiple homoclinic orbits in conservative and reversible systems
HTML articles powered by AMS MathViewer
- by Ale Jan Homburg and Jürgen Knobloch PDF
- Trans. Amer. Math. Soc. 358 (2006), 1715-1740 Request permission
Abstract:
We study dynamics near multiple homoclinic orbits to saddles in conservative and reversible flows. We consider the existence of two homoclinic orbits in the bellows configuration, where the homoclinic orbits approach the equilibrium along the same direction for positive and negative times. In conservative systems one finds one parameter families of suspended horseshoes, parameterized by the level of the first integral. A somewhat similar picture occurs in reversible systems, with two homoclinic orbits that are both symmetric. The lack of a first integral implies that complete horseshoes do not exist. We provide a description of orbits that necessarily do exist. A second possible configuration in reversible systems occurs if a non-symmetric homoclinic orbit exists and forms a bellows together with its symmetric image. We describe the nonwandering set in an unfolding. The nonwandering set is shown to simultaneously contain one-parameter families of periodic orbits, hyperbolic periodic orbits of different index, and heteroclinic cycles between these periodic orbits.References
- D. G. Aronson, Martin Golubitsky, and Martin Krupa, Coupled arrays of Josephson junctions and bifurcation of maps with $S_N$ symmetry, Nonlinearity 4 (1991), no. 3, 861–902. MR 1124338
- Alan R. Champneys and Mark D. Groves, A global investigation of solitary-wave solutions to a two-parameter model for water waves, J. Fluid Mech. 342 (1997), 199–229. MR 1460660, DOI 10.1017/S0022112097005193
- Shui-Nee Chow, Weishi Liu, and Yingfei Yi, Center manifolds for invariant sets, J. Differential Equations 168 (2000), no. 2, 355–385. Special issue in celebration of Jack K. Hale’s 70th birthday, Part 2 (Atlanta, GA/Lisbon, 1998). MR 1808454, DOI 10.1006/jdeq.2000.3890
- Bo Deng, The Šil′nikov problem, exponential expansion, strong $\lambda$-lemma, $C^1$-linearization, and homoclinic bifurcation, J. Differential Equations 79 (1989), no. 2, 189–231. MR 1000687, DOI 10.1016/0022-0396(89)90100-9
- Bo Deng, Exponential expansion with Šil′nikov’s saddle-focus, J. Differential Equations 82 (1989), no. 1, 156–173. MR 1023305, DOI 10.1016/0022-0396(89)90171-X
- Bo Deng, Homoclinic twisting bifurcations and cusp horseshoe maps, J. Dynam. Differential Equations 5 (1993), no. 3, 417–467. MR 1235038, DOI 10.1007/BF01053531
- Bo Deng, Exponential expansion with principal eigenvalues, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 (1996), no. 6, 1161–1167. Nonlinear dynamics, bifurcations and chaotic behavior. MR 1409417, DOI 10.1142/S0218127496000655
- Robert L. Devaney, Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc. 218 (1976), 89–113. MR 402815, DOI 10.1090/S0002-9947-1976-0402815-3
- Robert L. Devaney, Blue sky catastrophes in reversible and Hamiltonian systems, Indiana Univ. Math. J. 26 (1977), no. 2, 247–263. MR 431274, DOI 10.1512/iumj.1977.26.26018
- René De Vogelaere, On the structure of symmetric periodic solutions of conservative systems, with applications, Contributions to the theory of nonlinear oscillations, Vol. IV, Annals of Mathematics Studies, no. 41, Princeton University Press, Princeton, N.J., 1958, pp. 53–84. MR 0101362
- Bernold Fiedler and Dmitry Turaev, Coalescence of reversible homoclinic orbits causes elliptic resonance, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 (1996), no. 6, 1007–1027. Nonlinear dynamics, bifurcations and chaotic behavior. MR 1409408, DOI 10.1142/S0218127496000552
- A. Vanderbauwhede and S. A. van Gils, Center manifolds and contractions on a scale of Banach spaces, J. Funct. Anal. 72 (1987), no. 2, 209–224. MR 886811, DOI 10.1016/0022-1236(87)90086-3
- A.J. Homburg, Some global aspects of homoclinic bifurcations of vector fields, PhD-thesis, University of Groningen, 1993.
- Ale Jan Homburg, Global aspects of homoclinic bifurcations of vector fields, Mem. Amer. Math. Soc. 121 (1996), no. 578, viii+128. MR 1327210, DOI 10.1090/memo/0578
- Ale Jan Homburg, Singular heteroclinic cycles, J. Differential Equations 161 (2000), no. 2, 358–402. MR 1744144, DOI 10.1006/jdeq.1999.3691
- Ale Jan Homburg, Hiroshi Kokubu, and Martin Krupa, The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit, Ergodic Theory Dynam. Systems 14 (1994), no. 4, 667–693. MR 1304138, DOI 10.1017/S0143385700008117
- M. C. Irwin, A new proof of the pseudostable manifold theorem, J. London Math. Soc. (2) 21 (1980), no. 3, 557–566. MR 577730, DOI 10.1112/jlms/s2-21.3.557
- Masashi Kisaka, Hiroshi Kokubu, and Hiroe Oka, Bifurcations to $N$-homoclinic orbits and $N$-periodic orbits in vector fields, J. Dynam. Differential Equations 5 (1993), no. 2, 305–357. MR 1223451, DOI 10.1007/BF01053164
- M. Kisaka, H. Kokubu, and H. Oka, Supplement to homoclinic doubling bifurcation in vector fields, Dynamical systems (Santiago, 1990) Pitman Res. Notes Math. Ser., vol. 285, Longman Sci. Tech., Harlow, 1993, pp. 92–116. MR 1213943
- J. Knobloch, Bifurcation of degenerate homoclinic orbits in reversible and conservative systems, J. Dynam. Differential Equations 9 (1997), no. 3, 427–444. MR 1464081, DOI 10.1007/BF02227489
- J. Knobloch, Lin’s method for discrete dynamical systems, J. Differ. Equations Appl. 6 (2000), no. 5, 577–623. MR 1802448, DOI 10.1080/10236190008808247
- O. Yu. Koltsova and L. M. Lerman, Families of transverse Poincaré homoclinic orbits in $2n$-dimensional Hamiltonian systems close to the system with a loop to a saddle-center, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 (1996), no. 6, 991–1006. Nonlinear dynamics, bifurcations and chaotic behavior. MR 1409407, DOI 10.1142/S0218127496000540
- Xiao-Biao Lin, Using Mel′nikov’s method to solve Šilnikov’s problems, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), no. 3-4, 295–325. MR 1084736, DOI 10.1017/S0308210500031528
- M. Morse, G.A. Hedlund, Symbolic dynamics, Amer. J. Math. 60, 815–866 (1938).
- I.M. Ovsyannikov, L.P. Shil’nikov, On systems with saddle-focus homoclinic curve, Math. USSR Sbornik, 58, 557–574 (1987).
- Robert Roussarie and Christiane Rousseau, Almost planar homoclinic loops in $\textbf {R}^3$, J. Differential Equations 126 (1996), no. 1, 1–47. MR 1382055, DOI 10.1006/jdeq.1996.0042
- B. Sandstede, Verzweigungstheorie homokliner Verdopplungen, PhD-thesis, Free University of Berlin, 1993.
- Björn Sandstede, Center manifolds for homoclinic solutions, J. Dynam. Differential Equations 12 (2000), no. 3, 449–510. MR 1800130, DOI 10.1023/A:1026412926537
- B. Sandstede, C. K. R. T. Jones, and J. C. Alexander, Existence and stability of $N$-pulses on optical fibers with phase-sensitive amplifiers, Phys. D 106 (1997), no. 1-2, 167–206. MR 1460453, DOI 10.1016/S0167-2789(97)89488-2
- M. V. Shashkov and D. V. Turaev, An existence theorem of smooth nonlocal center manifolds for systems close to a system with a homoclinic loop, J. Nonlinear Sci. 9 (1999), no. 5, 525–573. MR 1707981, DOI 10.1007/s003329900078
- L.P. Shil’nikov, A case of the existence of a countable number of periodic motions, Soviet Math. Dokl. 6, 163–166 (1965).
- L.P. Shil’nikov, On the Poincaré-Birkhoff problem, Math. USSR Sbornik 3, 353–371 (1967).
- D. V. Turaev, Bifurcations of a homoclinic “figure eight” of a multidimensional saddle, Uspekhi Mat. Nauk 43 (1988), no. 5(263), 223–224 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 5, 264–265. MR 971495, DOI 10.1070/RM1988v043n05ABEH001952
- Dmitry Turaev, Multi-pulse homoclinic loops in systems with a smooth first integral, Ergodic theory, analysis, and efficient simulation of dynamical systems, Springer, Berlin, 2001, pp. 691–716. MR 1850326
- D.V. Turaev, L.P. Shil’nikov, On bifurcations of a homoclinic “figure eight" for a saddle with negative saddle value, Soviet. Math. Dokl. 34, 397–401 (1987).
- André Vanderbauwhede, Bifurcation of degenerate homoclinics, Results Math. 21 (1992), no. 1-2, 211–223. MR 1146644, DOI 10.1007/BF03323080
- André Vanderbauwhede and Bernold Fiedler, Homoclinic period blow-up in reversible and conservative systems, Z. Angew. Math. Phys. 43 (1992), no. 2, 292–318. MR 1162729, DOI 10.1007/BF00946632
- T. Wagenknecht and A. R. Champneys, When gap solitons become embedded solitons: a generic unfolding, Phys. D 177 (2003), no. 1-4, 50–70. MR 1965327, DOI 10.1016/S0167-2789(02)00773-X
- Eiji Yanagida, Branching of double pulse solutions from single pulse solutions in nerve axon equations, J. Differential Equations 66 (1987), no. 2, 243–262. MR 871997, DOI 10.1016/0022-0396(87)90034-9
Additional Information
- Ale Jan Homburg
- Affiliation: KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
- MR Author ID: 356749
- Email: alejan@science.uva.nl
- Jürgen Knobloch
- Affiliation: Institute for Mathematics, Technical University Ilmenau, Postbox 10 05 65, D-98684 Ilmenau, Germany
- Email: knobi@mathematik.tu-ilmenau.de
- Received by editor(s): September 19, 2002
- Received by editor(s) in revised form: July 1, 2004
- Published electronically: November 1, 2005
- © Copyright 2005 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 358 (2006), 1715-1740
- MSC (2000): Primary 34Cxx, 37Cxx, 37Gxx
- DOI: https://doi.org/10.1090/S0002-9947-05-03793-1
- MathSciNet review: 2186994