The geometry of symplectic pairs
HTML articles powered by AMS MathViewer
- by G. Bande and D. Kotschick PDF
- Trans. Amer. Math. Soc. 358 (2006), 1643-1655 Request permission
Abstract:
We study the geometry of manifolds carrying symplectic pairs consisting of two closed $2$-forms of constant ranks, whose kernel foliations are complementary. Using a variation of the construction of Boothby and Wang we build contact-symplectic and contact pairs from symplectic pairs.References
- G. Bande, Formes de contact généralisé, couples de contact et couples contacto-symplectiques, Thèse de Doctorat, Université de Haute Alsace, Mulhouse 2000.
- Gianluca Bande, Couples contacto-symplectiques, Trans. Amer. Math. Soc. 355 (2003), no. 4, 1699–1711 (French, with English summary). MR 1946411, DOI 10.1090/S0002-9947-02-03209-9
- G. Bande, P. Ghiggini, and D. Kotschick, Stability theorems for symplectic and contact pairs, Int. Math. Res. Not. 68 (2004), 3673–3688. MR 2130050, DOI 10.1155/S1073792804141974
- G. Bande, A. Hadjar, Contact pairs, Tohoku Math. J. (to appear).
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. (2) 68 (1958), 721–734. MR 112160, DOI 10.2307/1970165
- Grant Cairns and Étienne Ghys, Totally geodesic foliations on $4$-manifolds, J. Differential Geom. 23 (1986), no. 3, 241–254. MR 852156
- Hansjörg Geiges, Symplectic structures on $T^2$-bundles over $T^2$, Duke Math. J. 67 (1992), no. 3, 539–555. MR 1181312, DOI 10.1215/S0012-7094-92-06721-4
- Hansjörg Geiges, Symplectic couples on $4$-manifolds, Duke Math. J. 85 (1996), no. 3, 701–711. MR 1422363, DOI 10.1215/S0012-7094-96-08527-0
- Claude Godbillon, Feuilletages, Progress in Mathematics, vol. 98, Birkhäuser Verlag, Basel, 1991 (French). Études géométriques. [Geometric studies]; With a preface by G. Reeb. MR 1120547
- Robert E. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), no. 3, 527–595. MR 1356781, DOI 10.2307/2118554
- M. Hamilton, Bi-Lagrangian structures on closed manifolds, Diplomarbeit München 2004.
- Jonathan A. Hillman, Flat $4$-manifold groups, New Zealand J. Math. 24 (1995), no. 1, 29–40. MR 1348051
- J. A. Hillman, Four-manifolds, geometries and knots, Geometry & Topology Monographs, vol. 5, Geometry & Topology Publications, Coventry, 2002. MR 1943724
- D. Kotschick, Orientations and geometrisations of compact complex surfaces, Bull. London Math. Soc. 29 (1997), no. 2, 145–149. MR 1425990, DOI 10.1112/S0024609396002287
- D. Kotschick, On products of harmonic forms, Duke Math. J. 107 (2001), no. 3, 521–531. MR 1828300, DOI 10.1215/S0012-7094-01-10734-5
- D. Kotschick and S. Morita, Signatures of foliated surface bundles and the symplectomorphism groups of surfaces, Topology 44 (2005), no. 1, 131–149. MR 2104005, DOI 10.1016/j.top.2004.05.002
- Vladimir S. Matveev, Hyperbolic manifolds are geodesically rigid, Invent. Math. 151 (2003), no. 3, 579–609. MR 1961339, DOI 10.1007/s00222-002-0263-6
- V. S. Matveev, GF2003 Problem, Kyoto 2003.
- Jürgen Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286–294. MR 182927, DOI 10.1090/S0002-9947-1965-0182927-5
- J. S. Pasternack, Foliations and compact Lie group actions, Comment. Math. Helv. 46 (1971), 467–477. MR 300307, DOI 10.1007/BF02566859
- Koichi Sakamoto and Shinji Fukuhara, Classification of $T^{2}$-bundles over $T^{2}$, Tokyo J. Math. 6 (1983), no. 2, 311–327. MR 732086, DOI 10.3836/tjm/1270213873
- Ira H. Shavel, A class of algebraic surfaces of general type constructed from quaternion algebras, Pacific J. Math. 76 (1978), no. 1, 221–245. MR 572981
- N. I. Shepherd-Barron, Infinite generation for rings of symmetric tensors, Math. Res. Lett. 2 (1995), no. 2, 125–128. MR 1324696, DOI 10.4310/MRL.1995.v2.n2.a2
- Masaaki Ue, Geometric $4$-manifolds in the sense of Thurston and Seifert $4$-manifolds. I, J. Math. Soc. Japan 42 (1990), no. 3, 511–540. MR 1056834, DOI 10.2969/jmsj/04230511
- M. Wagner, Über die Klassifikation flacher Riemannscher Mannigfaltigkeiten, Diplomarbeit Basel 1997.
- C. T. C. Wall, Geometries and geometric structures in real dimension $4$ and complex dimension $2$, Geometry and topology (College Park, Md., 1983/84) Lecture Notes in Math., vol. 1167, Springer, Berlin, 1985, pp. 268–292. MR 827276, DOI 10.1007/BFb0075230
- C. T. C. Wall, Geometric structures on compact complex analytic surfaces, Topology 25 (1986), no. 2, 119–153. MR 837617, DOI 10.1016/0040-9383(86)90035-2
Additional Information
- G. Bande
- Affiliation: Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Via Ospedale 72, 09129 Cagliari, Italy
- Email: gbande@unica.it
- D. Kotschick
- Affiliation: Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany
- MR Author ID: 267229
- Email: dieter@member.ams.org
- Received by editor(s): May 28, 2004
- Published electronically: June 21, 2005
- Additional Notes: The authors are members of the European Differential Geometry Endeavour (EDGE), Research Training Network HPRN-CT-2000-00101, supported by The European Human Potential Programme
- © Copyright 2005 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 358 (2006), 1643-1655
- MSC (2000): Primary 53C15, 57R17, 57R30; Secondary 53C12, 53D35, 58A17
- DOI: https://doi.org/10.1090/S0002-9947-05-03808-0
- MathSciNet review: 2186990