Covering a compact set in a Banach space by an operator range of a Banach space with basis
Authors:
V. P. Fonf, W. B. Johnson, A. M. Plichko and V. V. Shevchyk
Journal:
Trans. Amer. Math. Soc. 358 (2006), 1421-1434
MSC (2000):
Primary 46B28; Secondary 46B15, 46B25, 46B50
DOI:
https://doi.org/10.1090/S0002-9947-05-04083-3
Published electronically:
September 9, 2005
MathSciNet review:
2186980
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A Banach space $X$ has the approximation property if and only if every compact set in $X$ is in the range of a one-to-one bounded linear operator from a space that has a Schauder basis. Characterizations are given for $\mathcal {L}_p$ spaces and quotients of $\mathcal {L}_p$ spaces in terms of covering compact sets in $X$ by operator ranges from $\mathcal {L}_p$ spaces. A Banach space $X$ is a $\mathcal {L}_1$ space if and only if every compact set in $X$ is contained in the closed convex symmetric hull of a basic sequence which converges to zero.
- G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson, and C. M. Newman, On uncomplemented subspaces of $L_{p},$ $1<p<2$, Israel J. Math. 26 (1977), no. 2, 178–187. MR 435822, DOI https://doi.org/10.1007/BF03007667
- T. Figiel, Factorization of compact operators and applications to the approximation problem, Studia Math. 45 (1973), 191–210. (errata insert). MR 336294, DOI https://doi.org/10.4064/sm-45-2-191-210
- T. Figiel and W. B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc. 41 (1973), 197–200. MR 341032, DOI https://doi.org/10.1090/S0002-9939-1973-0341032-5
- V. P. Fonf, One property of families of imbedded Banach spaces, J. Soviet Math. 59 (1992), no. 1, 687–690. Translation of Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. No. 55 (1991), 140–145 [ MR1219949 (94e:46031)]. MR 1157744, DOI https://doi.org/10.1007/BF01102495
- V. P. Fonf, On the extension of operational bases in Banach spaces, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 54 (1990), 37–41 (Russian); English transl., J. Soviet Math. 58 (1992), no. 4, 319–322. MR 1080722, DOI https://doi.org/10.1007/BF01097281
- V. P. Fonf, W. B. Johnson, G. Pisier, and D. Preiss, Stochastic approximation properties in Banach spaces, Studia Math. 159 (2003), no. 1, 103–119. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday. MR 2030905, DOI https://doi.org/10.4064/sm159-1-5
- Y. Gordon and D. R. Lewis, Absolutely summing operators and local unconditional structures, Acta Math. 133 (1974), 27–48. MR 410341, DOI https://doi.org/10.1007/BF02392140
- Wojciech Herer, Stochastic bases in Fréchet spaces, Demonstratio Math. 14 (1981), no. 3, 719–724 (1982). MR 663121
- William B. Johnson, Factoring compact operators, Israel J. Math. 9 (1971), 337–345. MR 290133, DOI https://doi.org/10.1007/BF02771684
- W. B. Johnson, H. P. Rosenthal, and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488–506. MR 280983, DOI https://doi.org/10.1007/BF02771464
- J. Lindenstrauss and H. P. Rosenthal, The ${\cal L}_{p}$ spaces, Israel J. Math. 7 (1969), 325–349. MR 270119, DOI https://doi.org/10.1007/BF02788865
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 0500056
- N. J. Nielsen and P. Wojtaszczyk, A remark on bases in ${\cal L}_{p}$-spaces with an application to complementably universal ${\cal L}_{\infty }$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 249–254 (English, with Russian summary). MR 322484
- A. Pełczyński, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971), 239–243. MR 308753, DOI https://doi.org/10.4064/sm-40-3-239-243
- A. Pełczyński, Universal bases, Studia Math. 32 (1969), 247–268. MR 241954, DOI https://doi.org/10.4064/sm-32-3-247-268
- A. Pełczyński and H. P. Rosenthal, Localization techniques in $L^{p}$ spaces, Studia Math. 52 (1974/75), 263–289. MR 361729
- A. N. Pličko, Choice in Banach space of subspaces with special properties and certain properties of quasicomplements, Funktsional. Anal. i Prilozhen. 15 (1981), no. 1, 82–83 (Russian). MR 609803
- Gideon Schechtman, On Pełczyński’s paper “Universal bases” (Studia Math. 32 (1969), 247–268), Israel J. Math. 22 (1975), no. 3-4, 181–184. MR 390730, DOI https://doi.org/10.1007/BF02761587
- Stanisław J. Szarek, A Banach space without a basis which has the bounded approximation property, Acta Math. 159 (1987), no. 1-2, 81–98. MR 906526, DOI https://doi.org/10.1007/BF02392555
- Paolo Terenzi, A complement to Kreĭn-Mil′man-Rutman theorem, with applications, Istit. Lombardo Accad. Sci. Lett. Rend. A 113 (1979), 341–353 (1981) (English, with Italian summary). MR 622113
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46B28, 46B15, 46B25, 46B50
Retrieve articles in all journals with MSC (2000): 46B28, 46B15, 46B25, 46B50
Additional Information
V. P. Fonf
Affiliation:
Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel — and — Department of Mathematics, Texas A&M University, College Station, Texas 77843
MR Author ID:
190586
Email:
fonf@black.bgu.ac.il
W. B. Johnson
Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843
MR Author ID:
95220
Email:
johnson@math.tamu.edu
A. M. Plichko
Affiliation:
Instytut Matematyki, Politechnika Krakowska im. Tadeusza Kosciuszki, ul. Warszawska 24, Krakow 31-155, Poland
Email:
aplichko@usk.pk.edu.pl
V. V. Shevchyk
Affiliation:
Sebastian-Kneipp Gasse, 7, Augsburg 86152, Germany
Email:
vshevchyk@hotmail.com
Received by editor(s):
September 7, 2001
Received by editor(s) in revised form:
July 9, 2002
Published electronically:
September 9, 2005
Additional Notes:
The second author was supported in part by NSF DMS-9900185, DMS-0200690, Texas Advanced Research Program 010366-0033-20013, and the U.S.-Israel Binational Science Foundation
The third author was supported in part by the DAAD Foundation
Article copyright:
© Copyright 2005
by the authors