Covering a compact set in a Banach space by an operator range of a Banach space with basis
HTML articles powered by AMS MathViewer
- by V. P. Fonf, W. B. Johnson, A. M. Plichko and V. V. Shevchyk PDF
- Trans. Amer. Math. Soc. 358 (2006), 1421-1434
Abstract:
A Banach space $X$ has the approximation property if and only if every compact set in $X$ is in the range of a one-to-one bounded linear operator from a space that has a Schauder basis. Characterizations are given for $\mathcal {L}_p$ spaces and quotients of $\mathcal {L}_p$ spaces in terms of covering compact sets in $X$ by operator ranges from $\mathcal {L}_p$ spaces. A Banach space $X$ is a $\mathcal {L}_1$ space if and only if every compact set in $X$ is contained in the closed convex symmetric hull of a basic sequence which converges to zero.References
- G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson, and C. M. Newman, On uncomplemented subspaces of $L_{p},$ $1<p<2$, Israel J. Math. 26 (1977), no. 2, 178–187. MR 435822, DOI 10.1007/BF03007667
- T. Figiel, Factorization of compact operators and applications to the approximation problem, Studia Math. 45 (1973), 191–210. (errata insert). MR 336294, DOI 10.4064/sm-45-2-191-210
- T. Figiel and W. B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc. 41 (1973), 197–200. MR 341032, DOI 10.1090/S0002-9939-1973-0341032-5
- V. P. Fonf, One property of families of imbedded Banach spaces, J. Soviet Math. 59 (1992), no. 1, 687–690. Translation of Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. No. 55 (1991), 140–145 [ MR1219949 (94e:46031)]. MR 1157744, DOI 10.1007/BF01102495
- V. P. Fonf, On the extension of operational bases in Banach spaces, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 54 (1990), 37–41 (Russian); English transl., J. Soviet Math. 58 (1992), no. 4, 319–322. MR 1080722, DOI 10.1007/BF01097281
- V. P. Fonf, W. B. Johnson, G. Pisier, and D. Preiss, Stochastic approximation properties in Banach spaces, Studia Math. 159 (2003), no. 1, 103–119. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday. MR 2030905, DOI 10.4064/sm159-1-5
- Y. Gordon and D. R. Lewis, Absolutely summing operators and local unconditional structures, Acta Math. 133 (1974), 27–48. MR 410341, DOI 10.1007/BF02392140
- Wojciech Herer, Stochastic bases in Fréchet spaces, Demonstratio Math. 14 (1981), no. 3, 719–724 (1982). MR 663121
- William B. Johnson, Factoring compact operators, Israel J. Math. 9 (1971), 337–345. MR 290133, DOI 10.1007/BF02771684
- W. B. Johnson, H. P. Rosenthal, and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488–506. MR 280983, DOI 10.1007/BF02771464
- J. Lindenstrauss and H. P. Rosenthal, The ${\cal L}_{p}$ spaces, Israel J. Math. 7 (1969), 325–349. MR 270119, DOI 10.1007/BF02788865
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- N. J. Nielsen and P. Wojtaszczyk, A remark on bases in ${\cal L}_{p}$-spaces with an application to complementably universal ${\cal L}_{\infty }$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 249–254 (English, with Russian summary). MR 322484
- A. Pełczyński, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971), 239–243. MR 308753, DOI 10.4064/sm-40-3-239-243
- A. Pełczyński, Universal bases, Studia Math. 32 (1969), 247–268. MR 241954, DOI 10.4064/sm-32-3-247-268
- A. Pełczyński and H. P. Rosenthal, Localization techniques in $L^{p}$ spaces, Studia Math. 52 (1974/75), 263–289. MR 361729
- A. N. Pličko, Choice in Banach space of subspaces with special properties and certain properties of quasicomplements, Funktsional. Anal. i Prilozhen. 15 (1981), no. 1, 82–83 (Russian). MR 609803
- Gideon Schechtman, On Pełczyński’s paper “Universal bases” (Studia Math. 32 (1969), 247–268), Israel J. Math. 22 (1975), no. 3-4, 181–184. MR 390730, DOI 10.1007/BF02761587
- Stanisław J. Szarek, A Banach space without a basis which has the bounded approximation property, Acta Math. 159 (1987), no. 1-2, 81–98. MR 906526, DOI 10.1007/BF02392555
- Paolo Terenzi, A complement to Kreĭn-Mil′man-Rutman theorem, with applications, Istit. Lombardo Accad. Sci. Lett. Rend. A 113 (1979), 341–353 (1981) (English, with Italian summary). MR 622113
Additional Information
- V. P. Fonf
- Affiliation: Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel — and — Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 190586
- Email: fonf@black.bgu.ac.il
- W. B. Johnson
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 95220
- Email: johnson@math.tamu.edu
- A. M. Plichko
- Affiliation: Instytut Matematyki, Politechnika Krakowska im. Tadeusza Kosciuszki, ul. Warszawska 24, Krakow 31-155, Poland
- Email: aplichko@usk.pk.edu.pl
- V. V. Shevchyk
- Affiliation: Sebastian-Kneipp Gasse, 7, Augsburg 86152, Germany
- Email: vshevchyk@hotmail.com
- Received by editor(s): September 7, 2001
- Received by editor(s) in revised form: July 9, 2002
- Published electronically: September 9, 2005
- Additional Notes: The second author was supported in part by NSF DMS-9900185, DMS-0200690, Texas Advanced Research Program 010366-0033-20013, and the U.S.-Israel Binational Science Foundation
The third author was supported in part by the DAAD Foundation - © Copyright 2005 by the authors
- Journal: Trans. Amer. Math. Soc. 358 (2006), 1421-1434
- MSC (2000): Primary 46B28; Secondary 46B15, 46B25, 46B50
- DOI: https://doi.org/10.1090/S0002-9947-05-04083-3
- MathSciNet review: 2186980