Low-dimensional homogeneous Einstein manifolds
HTML articles powered by AMS MathViewer
- by Christoph Böhm and Megan M. Kerr PDF
- Trans. Amer. Math. Soc. 358 (2006), 1455-1468 Request permission
Abstract:
We show that compact, simply connected homogeneous spaces up to dimension $11$ admit homogeneous Einstein metrics.References
- J. F. Adams, Lectures on exceptional Lie groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996. With a foreword by J. Peter May; Edited by Zafer Mahmud and Mamoru Mimura. MR 1428422
- D. Alekseevsky, Isabel Dotti, and C. Ferraris, Homogeneous Ricci positive $5$-manifolds, Pacific J. Math. 175 (1996), no. 1, 1–12. MR 1419469
- D. V. Alekseevskiĭ and B. N. Kimel′fel′d, Structure of homogeneous Riemannian spaces with zero Ricci curvature, Funkcional. Anal. i PriloŽen. 9 (1975), no. 2, 5–11 (Russian). MR 0402650
- Andreas Arvanitoyeorgos, New invariant Einstein metrics on generalized flag manifolds, Trans. Amer. Math. Soc. 337 (1993), no. 2, 981–995. MR 1097162, DOI 10.1090/S0002-9947-1993-1097162-3
- Simon Aloff and Nolan R. Wallach, An infinite family of distinct $7$-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975), 93–97. MR 370624, DOI 10.1090/S0002-9904-1975-13649-4
- Allen Back and Wu-Yi Hsiang, Equivariant geometry and Kervaire spheres, Trans. Amer. Math. Soc. 304 (1987), no. 1, 207–227. MR 906813, DOI 10.1090/S0002-9947-1987-0906813-X
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- S. Bochner, Curvature and Betti numbers, Ann. of Math. (2) 49 (1948), 379–390. MR 25238, DOI 10.2307/1969287
- Christoph Böhm, Homogeneous Einstein metrics and simplicial complexes, J. Differential Geom. 67 (2004), no. 1, 79–165. MR 2153482
- C. Böhm, M. Wang, and W. Ziller, A variational approach for compact homogeneous Einstein manifolds, Geom. Funct. Anal. 14 (2004), no. 4, 681–733. MR 2084976, DOI 10.1007/s00039-004-0471-x
- Charles P. Boyer and Krzysztof Galicki, On Sasakian-Einstein geometry, Internat. J. Math. 11 (2000), no. 7, 873–909. MR 1792957, DOI 10.1142/S0129167X00000477
- Charles P. Boyer, Krzysztof Galicki, Benjamin M. Mann, and Elmer G. Rees, Compact $3$-Sasakian $7$-manifolds with arbitrary second Betti number, Invent. Math. 131 (1998), no. 2, 321–344. MR 1608567, DOI 10.1007/s002220050207
- L. Castellani, R. D’Auria, and P. Fré, $\textrm {SU}(3)\otimes \textrm {SU}(2)\otimes \textrm {U}(1)$ from $D=11$ supergravity, Nuclear Phys. B 239 (1984), no. 2, 610–652. MR 749348, DOI 10.1016/0550-3213(84)90265-7
- L. Castellani, L. J. Romans, and N. P. Warner, A classification of compactifying solutions for $d=11$ supergravity, Nuclear Phys. B 241 (1984), no. 2, 429–462. MR 757859, DOI 10.1016/0550-3213(84)90055-5
- J. E. D’Atri, N. K. Nickerson: Divergence-preserving geodesic symmetry, J. Diff. Geom. 9, 251–262, (1979)
- R. D’Auria, P. Fré, and P. van Nieuwenhuizen, $N=2$ matter coupled supergravity from compactification on a coset $G/H$ possessing an additional Killing vector, Phys. Lett. B 136 (1984), no. 5-6, 347–353. MR 735731, DOI 10.1016/0370-2693(84)92018-5
- W. Dickinson, M. M. Kerr: The geometry of compact homogeneous spaces with two isotropy summands, preprint (2002)
- W. Dickinson, M. M. Kerr: Einstein metrics on compact homogeneous spaces, preprint (2002)
- E. B. Dynkin, Maximal subgroups of the classical groups, Trudy Moskov. Mat. Obšč. 1 (1952), 39–166 (Russian). MR 0049903
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (3 plates) (Russian). MR 0047629
- Jens Heber, Noncompact homogeneous Einstein spaces, Invent. Math. 133 (1998), no. 2, 279–352. MR 1632782, DOI 10.1007/s002220050247
- D. Hilbert: Die Grundlagen der Physik, Nachr. Akad. Wiss. Gött., 395–407, (1915)
- Gary R. Jensen, Homogeneous Einstein spaces of dimension four, J. Differential Geometry 3 (1969), 309–349. MR 261487
- Gary R. Jensen, The scalar curvature of left-invariant Riemannian metrics, Indiana Univ. Math. J. 20 (1970/71), 1125–1144. MR 289726, DOI 10.1512/iumj.1971.20.20104
- Gary R. Jensen, Einstein metrics on principal fibre bundles, J. Differential Geometry 8 (1973), 599–614. MR 353209
- Dominic D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. MR 1787733
- Megan M. Kerr, Some new homogeneous Einstein metrics on symmetric spaces, Trans. Amer. Math. Soc. 348 (1996), no. 1, 153–171. MR 1327258, DOI 10.1090/S0002-9947-96-01512-7
- Masahiro Kimura, Homogeneous Einstein metrics on certain Kähler $C$-spaces, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 303–320. MR 1145261, DOI 10.2969/aspm/01810303
- S. Klaus: Einfach-zusammenhängende Kompakte Homogene Räume bis zur Dimension Neun, Diplomarbeit, Johannes Gutenberg Universität (1988)
- Shoshichi Kobayashi, Topology of positively pinched Kaehler manifolds, Tohoku Math. J. (2) 15 (1963), 121–139. MR 154235, DOI 10.2748/tmj/1178243839
- J. L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canadian J. Math. 7 (1955), 562–576 (French). MR 77879, DOI 10.4153/CJM-1955-061-3
- Matthias Kreck and Stephan Stolz, A diffeomorphism classification of $7$-dimensional homogeneous Einstein manifolds with $\textrm {SU}(3)\times \textrm {SU}(2)\times \textrm {U}(1)$-symmetry, Ann. of Math. (2) 127 (1988), no. 2, 373–388. MR 932303, DOI 10.2307/2007059
- Matthias Kreck and Stephan Stolz, Some nondiffeomorphic homeomorphic homogeneous $7$-manifolds with positive sectional curvature, J. Differential Geom. 33 (1991), no. 2, 465–486. MR 1094466
- B. Kruggel: Quotienten halbeinfacher, kompakter Liescher Gruppen; Eine Klassifikation bis zur Dimension Zwölf, Diplomarbeit, Heinrich-Heine-Universität Düsseldorf (1993)
- Claude LeBrun and McKenzie Wang (eds.), Surveys in differential geometry: essays on Einstein manifolds, Surveys in Differential Geometry, vol. 6, International Press, Boston, MA, 1999. Lectures on geometry and topology, sponsored by Lehigh University’s Journal of Differential Geometry. MR 1798603
- John Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430–436. MR 77932, DOI 10.2307/1970012
- Yu. G. Nikonorov and E. D. Rodionov, Compact six-dimensional homogeneous Einstein manifolds, Dokl. Akad. Nauk 366 (1999), no. 5, 599–601 (Russian). MR 1721419
- Yu. G. Nikonorov, On a class of homogeneous compact Einstein manifolds, Sibirsk. Mat. Zh. 41 (2000), no. 1, 200–205, iv (Russian, with Russian summary); English transl., Siberian Math. J. 41 (2000), no. 1, 168–172. MR 1756487, DOI 10.1007/BF02674006
- Yu. G. Nikonorov, Compact homogeneous Einstein 7-manifolds, Geom. Dedicata 109 (2004), 7–30. MR 2113184, DOI 10.1007/s10711-004-3559-4
- A. L. Onishchik: Topology of Transitive Transformation Groups, Barth, (1994)
- Don N. Page and C. N. Pope, New squashed solutions of $d=11$ supergravity, Phys. Lett. B 147 (1984), no. 1-3, 55–60. MR 768319, DOI 10.1016/0370-2693(84)90591-4
- Y. Sakane, Homogeneous Einstein metrics on flag manifolds, Lobachevskii J. Math. 4 (1999), 71–87. Towards 100 years after Sophus Lie (Kazan, 1998). MR 1743146
- Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, DOI 10.1007/s002220050176
- McKenzie Y. Wang, Some examples of homogeneous Einstein manifolds in dimension seven, Duke Math. J. 49 (1982), no. 1, 23–28. MR 650366
- McKenzie Y. Wang, Einstein metrics and quaternionic Kähler manifolds, Math. Z. 210 (1992), no. 2, 305–325. MR 1166528, DOI 10.1007/BF02571800
- McKenzie Y. Wang and Wolfgang Ziller, On normal homogeneous Einstein manifolds, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 4, 563–633. MR 839687
- McKenzie Y. Wang and Wolfgang Ziller, Existence and nonexistence of homogeneous Einstein metrics, Invent. Math. 84 (1986), no. 1, 177–194. MR 830044, DOI 10.1007/BF01388738
- McKenzie Y. Wang and Wolfgang Ziller, Einstein metrics on principal torus bundles, J. Differential Geom. 31 (1990), no. 1, 215–248. MR 1030671
- Joseph A. Wolf, The goemetry and structure of isotropy irreducible homogeneous spaces, Acta Math. 120 (1968), 59–148. MR 223501, DOI 10.1007/BF02394607
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
- W. Ziller, Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann. 259 (1982), no. 3, 351–358. MR 661203, DOI 10.1007/BF01456947
Additional Information
- Christoph Böhm
- Affiliation: Mathematisches Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
- Email: cboehm@math.uni-muenster.de
- Megan M. Kerr
- Affiliation: Department of Mathematics, Wellesley College, 106 Central St., Wellesley, Massachusetts 02481
- Email: mkerr@wellesley.edu
- Received by editor(s): December 17, 2003
- Published electronically: November 18, 2005
- Additional Notes: The second author was partially supported by the Radcliffe Institute for Advanced Study and by the Clare Boothe Luce Foundation.
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 1455-1468
- MSC (2000): Primary 53C30; Secondary 53C25
- DOI: https://doi.org/10.1090/S0002-9947-05-04096-1
- MathSciNet review: 2186982