EQUIVALENCE OF DOMAINS ARISING FROM DUALITY OF ORBITS ON FLAG MANIFOLDS

TOSHIHIKO MATSUKI

ABSTRACT. S. Gindikin and the author defined a G_{RC}-invariant subset $C(S)$ of G_C for each K_C-orbit S on every flag manifold G_C/P and conjectured that the connected component $C(S)_0$ of the identity would be equal to the Akhiezer-Gindikin domain D if S is of non-holomorphic type by computing many examples. In this paper, we first prove this conjecture for the open K_C-orbit S on an “arbitrary” flag manifold generalizing the result of Barchini. This conjecture for closed S was solved by J. A. Wolf and R. Zierau for Hermitian cases and by G. Fels and A. Huckleberry for non-Hermitian cases. We also deduce an alternative proof of this result for non-Hermitian cases.

1. Introduction

Let G_C be a connected complex semisimple Lie group and let G_R be a connected real form of G_C. Let K_C be the complexification in G_C of a maximal compact subgroup K of G_R. Let $X = G_C/P$ be a flag manifold of G_C, where P is an arbitrary parabolic subgroup of G_C. Then there exists a natural one-to-one correspondence between the set of K_C-orbits S and the set of G_R-orbits S' on X given by the condition:

\[(1.1)\quad S \leftrightarrow S' \iff S \cap S' \text{ is non-empty and compact}\]

This is the conjecture of S. Gindikin and the author. In the case of non-holomorphic type, the conjecture states that $C(S)_0$ is equal to the Akhiezer-Gindikin domain D. This conjecture has been proved by various authors for different cases. In this paper, we will prove this conjecture for the open K_C-orbit S on an arbitrary flag manifold generalizing the result of Barchini. The conjecture for closed S was solved by J. A. Wolf and R. Zierau for Hermitian cases and by G. Fels and A. Huckleberry for non-Hermitian cases. We will also deduce an alternative proof of this result for non-Hermitian cases.
Conjecture 1.1 (Conjecture 1.6 in [GM1]). Suppose that $X = G_C/P$ is not K_C-homogeneous. Then we will have $C(S)_0 = D$ for all K_C-orbits S on X of non-holomorphic type. Here $C(S)_0$ is the connected component of $C(S)$ containing the identity.

Remark 1.2. (i) When G_R is of Hermitian type, there exist two special closed K_C-orbits $S_1 = K_C B/B = Q/B$ and $S_2 = K_C w_0 B/B = w_0 Q/B$ on the full flag manifold G_C/B, where $Q = K_C B$ is the usual maximal parabolic subgroup of G_C defined by a non-trivial central element in $i \mathfrak{t}$ and w_0 is the longest element in the Weyl group. For each parabolic subgroup P containing B, two closed K_C-orbits S_1P and S_2P on G_C/P are called of holomorphic type and all the other K_C-orbits are called of non-holomorphic type. When G_R is of non-Hermitian type, we define that all the K_C-orbits are of non-holomorphic type.

(ii) If $X = G_C/P$ is K_C-homogeneous, then we have $S = S' = X$ and therefore $C(S) = G_C$. So we must assume that X is not K_C-homogeneous. When G_C is simple, it is shown in [O], Theorem 6.1 that there are only two types of K_C-homogeneous flag manifolds X as follows. (Note that the K_C-orbit structure on X depends only on the Lie algebras if K_C is connected.)

1. $G_C = SL(2n, \mathbb{C})$, $K_C = Sp(n, \mathbb{C})$, $X = P^{2n-1}(\mathbb{C})$.
2. $G_C = SO(2n, \mathbb{C})$, $K_C = SO(2n - 1, \mathbb{C})$, $X = SO(2n)/U(n)$.

Let S_{op} denote the unique open K_C-B double coset in G_C. Then S_{op}' is closed in G_C and therefore we can write

$$C(S_{op}) = \{ x \in G_C \mid x S_{op} \supseteq S_{op}' \}.$$

The domain $C(S_{op})_0$ is often called the “Iwasawa domain”.

It is proved by Barchini ([B]) that $C(S_{op})_0 \subset D$. On the other hand, Huckleberry ([H]) proved the opposite inclusion

$$D \subset C(S_{op})_0.$$

(Recently [MY] gave a proof of (1.2) without complex analysis.) So we have the equality

$$C(S_{op})_0 = D.$$

It is proved in Proposition 8.1 and Proposition 8.3 in [GM1] that $C(S_{op})_0 \subset C(S)_0$ for all K_C-orbits S on all flag manifolds $X = G_C/P$. So we have only to prove the inclusion $C(S)_0 \subset D$ in Conjecture 1.1.

The first aim of this paper is the following generalization of Barchini’s theorem which solves Conjecture 1.1 for the open K_C-orbit on an arbitrary flag manifold G_C/P.

Theorem 1.3. Suppose that G_R is simple. Then there exists a K_C-B invariant subset \tilde{S} in G_C satisfying the following three conditions:

(i) \tilde{S} consists of a single K_C-B double coset when G_R is of non-Hermitian type and consists of two K_C-B double cosets when G_R is of Hermitian type.

(ii) $x \tilde{S} \cap S_{op}' \neq \emptyset$ for all elements x in the boundary of D.

(iii) Let P be a parabolic subgroup of G_C containing B. If G_C/P is not K_C-homogeneous, then

$$\tilde{S} \cap S_{op}P = \emptyset.$$
Corollary 1.4. Let P be a parabolic subgroup of G_C containing B. If G_C/P is not K_C-homogeneous, then $C(S_{op}P) = D$.

Proof. Let x be an element in the boundary of D. Then it follows from Theorem 1.3 that $xS^c \cap S_{op}' \neq \emptyset$. If $x \in C(S_{op}P)_{0}$, then we have

$$xS_{op}P \supset S_{op}'P.$$

Hence we have $xS^c \cap xS_{op}P \neq \emptyset$. Since $S_{op}P$ is open in G_C, this implies that $D/K \cap S_{op}P \neq \emptyset$ a contradiction to the condition (iii) in Theorem 1.3. Thus we have $C(S_{op}P)_0 \subset D$.

Example 1.5. Let $G_C = SL(3, \mathbb{C})$, $G_R = SU(2, 1)$ and

$$K_C = \left\{ \left(\begin{array}{ccc} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{array} \right) \in G_C \right\}.$$

Then the complex symmetric space G_C/K_C is identified with the space consisting of the pairs (V_+, V_-) of two-dimensional subspaces V_+ and one-dimensional subspaces V_- of \mathbb{C}^3 such that $V_+ \cap V_- = \{0\}$ by the identification

$$gK_C \mapsto (V_+, V_-) = (gV_+, gV_-).$$

Here $V_+^0 = C_1 \oplus C_2$ and $V_-^0 = C_3$ with the canonical basis e_1, e_2, e_3 of \mathbb{C}^3. Using the Hermitian form $Q(z) = |z_1|^2 + |z_2|^2 - |z_3|^2$ defining $SU(2, 1)$, we can decompose \mathbb{C}^3 as

$$\mathbb{C}^3 = C_0 \sqcup C_+ \sqcup C_-,$$

where $C_0 = \{ z \in \mathbb{C}^3 \mid Q(z) = 0 \}$, $C_+ = \{ z \in \mathbb{C}^3 \mid Q(z) > 0 \}$ and $C_- = \{ z \in \mathbb{C}^3 \mid Q(z) < 0 \}$. Then the Akhiezer-Gindikin domain D/K_C is described as

$$D/K_C = \{(V_+, V_-) \in G_C/K_C \mid V_+ - \{0\} \subset C_+ \text{ and } V_- - \{0\} \subset C_- \}$$

by [GM], Proposition 2.2. Hence the boundary of D/K_C consists of the three G_R-orbits

$$D_1 = \{(V_+, V_-) \in G_C/K_C \mid V_+ \text{ is tangent to } C_0 \text{ and } V_- - \{0\} \subset C_- \},$$

$$D_2 = \{(V_+, V_-) \in G_C/K_C \mid V_+ - \{0\} \subset C_+ \text{ and } V_- \in C_0 \},$$

$$D_3 = \{(V_+, V_-) \in G_C/K_C \mid V_+ \text{ is tangent to } C_0 \text{ and } V_- \in C_0 \}.$$

Let B denote the standard Borel subgroup of G_C consisting of upper triangular matrices contained in G_C. Then the full flag manifold $X = G_C/B$ consists of flags (ℓ, p), where ℓ are one-dimensional subspaces of \mathbb{C}^3 and p are two-dimensional subspaces of \mathbb{C}^3 containing ℓ. Note that B is the isotropy subgroup of the flag $(C_1, C_1 \oplus C_2)$. We see that X is decomposed into the six K_C-orbits

$$S_1 = \{(\ell, p) \in X \mid \ell = V_0^0\},$$

$$S_2 = \{(\ell, p) \in X \mid p = V_0^0\},$$

$$S_3 = \{(\ell, p) \in X \mid \ell \subset V_0^0 \text{ and } p \supset V_0^0\},$$

$$S_4 = \{(\ell, p) \in X \mid p \supset V_0^0 \} - (S_1 \sqcup S_3),$$

$$S_5 = \{(\ell, p) \in X \mid \ell \subset V_0^0 \} - (S_2 \sqcup S_3),$$

$$S_{op} = X - (S_1 \sqcup S_2 \sqcup S_3 \sqcup S_4 \sqcup S_5).$$
On the other hand, the corresponding $G_\mathbb{R}$-orbits are

$$
S'_1 = \{(\ell, p) \in X \mid \ell - \{0\} \subset C_-, \}
$$

$$
S'_2 = \{(\ell, p) \in X \mid p - \{0\} \subset C_+ \}
$$

$$
S'_3 = \{(\ell, p) \in X \mid \ell - \{0\} \subset C_+ \text{ and } p \cap C_- \neq \emptyset \}
$$

$$
S'_4 = \{(\ell, p) \in X \mid \ell \subset C_0 \text{ and } p \text{ is not tangent to } C_0 \},
$$

$$
S'_{op} = \{(\ell, p) \in X \mid \ell \subset C_0 \text{ and } p \text{ is tangent to } C_0 \},
$$

respectively.

If $xK_\mathbb{C} = (V_+, V_-) \in D_1 \sqcup D_3$, then V_+ is tangent to C_0. Hence the flag $(V_+ \cap C_0, V_+)$ is contained in $xS_2 \cap S'_{op}$. On the other hand, if $xK_\mathbb{C} = (V_+, V_-) \in D_2 \sqcup D_3$, then $V_- \subset C_0$. Hence the flag (V_-, p) (p is tangent to C_0) is contained in $xS_1 \cap S'_4$. Thus we have

$$
x(S_1 \sqcup S_2) \cap S'_{op} \neq \emptyset
$$

for all elements x in the boundary of D.

There are two non-trivial parabolic subgroups

$$
P_1 = \{g \in G_\mathbb{C} \mid gV_+^0 = V_+^0 \}
$$

and

$$
P_2 = \{g \in G_\mathbb{C} \mid gC_{e_1} = C_{e_1} \}
$$

in $G_\mathbb{C}$ containing B. We see that $S_{op}P_1 = S_5 \sqcup S_{op}$ and that $S_{op}P_2 = S_4 \sqcup S_{op}$. So we have

$$
(S_1 \sqcup S_2) \cap S_{op}P = \emptyset
$$

for all parabolic subgroups P of $G_\mathbb{C}$ such that $B \subset P \neq G_\mathbb{C}$. Thus we have verified Theorem 1.3 for $\bar{S} = S_1 \sqcup S_2$ in this case.

Remark 1.6. (i) The following statement is false:

$$
x \in \partial(C(S)_0) \implies xS^cl \cap \partial S' \neq \emptyset
$$

for non-open S. In fact there is a counterexample when $G_\mathbb{R} = SU(2, 1)$ as follows.

In the above example, let $xK_\mathbb{C} = (V_+, V_-)$ be a point in D_1. Then V_+ is tangent to C_0 and $V_- \cap \{0\} \subset C_-$. Consider the $K_\mathbb{C}$-orbit S_4 on $G_\mathbb{C}/B$. Then the intersection $xS_4 \cap S'_4$ consists of the flags (ℓ, p) such that

$$
\ell \subset C_0, \quad \ell \notin V_+ \quad \text{and} \quad p \supset V_-.
$$

Hence $xS_4 \cap S'_4$ is not closed in $G_\mathbb{C}$ and therefore $x \in \partial(C(S_4)_0)$. On the other hand, since xS^cl_4 consists of flags (ℓ, p) satisfying $p \supset V_-$, it does not intersect $\partial S'_4 = S'_{op}$.

(ii) By the above argument we see that

$$
x \in D_1 \sqcup D_3 \implies (xS_4 \cap S'_4)^cl \subset xS_3 \cap S'_4.
$$

On the other hand suppose that $x \in D_2 \sqcup D_3$. Then $V_- \subset C_0$. Let (ℓ_0, p_0) denote the unique flag in $xS_1 \cap S'_{op}$ given by

$$
\ell_0 = V_- \quad \text{and} \quad p_0 \text{ is tangent to } C_0.
$$

Then we can take a sequence $\{(\ell_n, p_n)\}$ of flags in $xS_4 \cap S'_4$ converging to (ℓ_0, p_0). Hence

$$
x \in D_2 \sqcup D_3 \implies (xS_4 \cap S'_4)^cl \supset xS_1 \cap S'_{op}.
$$

By (1.4) and (1.5), we have

$$
C(S_4)_0 \subset D.$$
Since the opposite inclusion is known by (1.3) and [GM1], Proposition 8.3, we have
\[C(S_4)_0 = D. \]

On the other hand, we have \(C(S_4P_1)_0 = C(S_1) \) since \(S_4P_1 = S_1P_1 \) is of holomorphic type ([WZ1]). Hence \(C(S_4)_0 \) is strictly included in \(C(S_4P_1)_0 \) though the contradicting converse inclusion and the equality are asserted in [HN], Proposition 6 and Proposition 10, respectively. (Note that the projection \(S'_4/B \to S'_4P_1/P_1 \) is proper and that \(S'_4 \) is left \(P_1 \)-invariant.)

Next suppose that \(S \) is closed. Then \(S' \) is open ([M2]) and so the condition
\[xS \cap S' \text{ is non-empty and compact (in } G_C/P) \]

implies
\[xS \subseteq S'. \]

Hence the set \(C(S)_0 \) is the cycle space for \(S' \) introduced by Wells and Wolf ([WW]). Let \(B \) be a Borel subgroup of \(G_C \) contained in \(P \). Let \(\{ S_j \mid j \in J \} \) denote the set of \(K_C-B \) double cosets in \(G_C \) of codimension one and let \(T_j = S'_j \) denote the closure of \(S_j \). Then we defined in [GM2] a subset \(J' = J(S) \) of \(J \) for \(S \) by
\[J' = \{ j \in J \mid S(BwB)^{cl} = T_j \text{ for some } w \in W \} \]

and proved the equality
(1.6) \[C(S)_0 = \Omega(J'), \]

where
\[\Omega(J') = \{ x \in G_C \mid xT_j \cap S'_j = \emptyset \text{ for all } j \in J' \}_0. \]

(See [GM2], Remark 4, for the related paper [HW].) It is also shown in [GM2] that \(\bigcup_{j \in J} T_j \) is the complement of \(S_{op} \) in \(G_C \). So we have the equalities
(1.7) \[D = C(S_{op})_0 = \Omega(J) \]

by (1.3).

The second aim of this paper is to prove the following theorem.

Theorem 1.7. Suppose that \(G_R \) is of non-Hermitian type. Then the \(K_C-B \) double coset \(\tilde{S} \) given in Theorem 1.3 is contained in \(\bigcap_{j \in J} T_j \).

As a direct consequence of this theorem, we have:

Corollary 1.8. If \(G_R \) is of non-Hermitian type, then \(\Omega(J') = D \) for all nonempty subsets \(J' \) of \(J \).

Proof. Since \(D = \Omega(J) \subseteq \Omega(J') \) by (1.7), we have only to show the inclusion \(\Omega(J') \subseteq D \). Let \(x \) be an arbitrary element on the boundary of \(D \). Then
\[xT_j \cap S'_j \cap x\tilde{S}_{op} \neq \emptyset \text{ for all } j \in J \]

by Theorem 1.3 and Theorem 1.7. So we have \(x \notin \Omega(J') \) for any \(J' \neq \emptyset \). Hence \(\Omega(J') \subseteq D \). \(\square \)

By (1.6) we have:

Corollary 1.9. If \(G_R \) is of non-Hermitian type and \(S \) is a closed \(K_C \)-orbit on an arbitrary flag manifold \(X = G_C/P \) such that \(S \neq X \), then \(C(S)_0 = D \).
Here we review the history of the inclusion
\[(1.8) \quad C(S)_0 \subset D\]
for closed K_C-orbits S on X. (As we explained, the opposite inclusion is already established.)

It was conjectured in [G] (Problem 6) that the Akhiezer-Gindikin domain D would be the universal domain for all Stein extensions of Riemannian symmetric spaces G_R/K and that it would coincide with the cycle spaces $C(S)_0$ and the Iwasawa domain $C(S_{op})_0$.

When G_R is of Hermitian type, (1.8) was proved in [WZ1] and [WZ2] for closed K_C-orbits of non-holomorphic type (cf. Remark 5 in [GM2]). Remark that $C(S)_0$ is bigger than D if S is of holomorphic type (cf. [WZ1] and [GM1]).

Here we should note the following generality: Let $\pi : X' \to X$ be a G_C-equivariant surjection between flag manifolds and let S be a closed K_C-orbit on X'. Then
\[xS \subset S' \implies x\pi(S) \subset \pi(S').\]
Hence
\[x \in C(S) \implies x \in C(\pi(S))\]
and so we have $C(S) \subset C(\pi(S))$. This implies that we have only to prove the inclusion (1.8) for minimal flag manifolds with non-trivial K_C-orbit structure.

In [GM1], (1.8) was proved for typical minimal flag manifolds X with non-trivial K_C-orbit structure for all non-Hermitian classical G_R by case-by-case checkings. (Note that they include the complex cases that $G_R = SL(n,\mathbb{C})$, $SO(n,\mathbb{C})$ or $Sp(n,\mathbb{C})$.) We proposed our Conjecture 1.1 (Conjecture 1.6 in [GM1]) by these many explicit computations.

Recently, Fels and Huckleberry ([FH]) gave a general proof of (1.8) for closed S for all non-Hermitian cases by using a complex analytic notion “Kobayashi hyperbolicity”. But we need no complex analysis (except Lemma 2.1) in our proof of Theorem 1.7, Corollary 1.8 and Corollary 1.9 in this paper.

The rest of this paper is constructed as follows. In Section 2 and Section 3, we consider real Lie groups G and associated pairs of symmetric subgroups H and H' of G. If $G = G_C$ and $H = K_C$, then $H' = G_R$. In this general setting we defined a generalization of the Akhiezer-Gindikin domain D in [M7]. In Section 2 we define generic elements in the boundary of D generalizing the results in [FH]. Section 4. (Remark: In Section 3 of [FH], they studied the Jordan decomposition and elliptic elements of the double coset decomposition $G_R \backslash G_C/K_C$. But these results were already given in [M5] in a more general setting as we explain in Section 2.)

In Section 3 we construct a parabolic subgroup P_Z such that $H'P_Z$ and $H\alpha^{-1}_aP_Z$ are closed in G. Here a_α is an element of T contained in the boundary of $\exp t^\pm$. Then we prove the key theorem (Theorem 3.2) which asserts that
\[xH\alpha^{-1}_aP_Z \cap H'P_Z \neq \emptyset\]
for all elements x in the boundary of D under some conditions. (If H' is a group of non-Hermitian type and G is the complexification of H', then the conditions are satisfied. If H' is of Hermitian type, then we must also consider P_{-Z}.)

In sections 4 through 7, we assume that G is a complex semisimple Lie group and H' is a connected real form of G. Hence H is the complexification of a maximal compact subgroup of H'. (If we use the notations in Section 1, then we rewrite as $G = G_C$, $H = K_C$ and $H' = G_R$.) In Section 4 and 5 we prove Theorem 1.3. In
Section 6 we prove Theorem 1.7. Section 7 is an appendix for the orbit structure on the full flag manifolds.

Remark 1.10. Recently Conjecture 1.1 is studied for non-closed and non-open orbits in [MS]. In this paper our conjecture is solved for non-Hermitian cases. So the remaining problem in our conjecture is only for non-closed and non-open orbits when G_R is of Hermitian type (cf. Remark 1.6).

2. Generic elements in the boundary of Akhiezer-Gindikin domain

First we prepare the following lemma on the “continuity” of the eigenvalues. For a complex $m \times m$ matrix A, define a norm $N(A)$ of A by

$$N(A) = \max \{ |a_{ij}| \mid i, j = 1, \ldots, m \}.$$

For $\delta > 0$ define a compact neighborhood $U_\delta(A)$ of A by

$$U_\delta(A) = \{ B \mid N(B - A) \leq \delta \}.$$

For a matrix A let $f_A(z) = \text{det}(zI - A)$ denote the eigenpolynomial of A.

Lemma 2.1. (i) Let A be a complex square matrix with an eigenvalue λ. Then for any $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$B \in U_\delta(A) \implies \text{there exists an eigenvalue } \mu \text{ of } B \text{ such that } |\mu - \lambda| < \varepsilon.$$

(ii) Let $A = \{a_{ij}\}$ be a complex $m \times m$ matrix. Then

$$|\lambda| \leq mN(A)$$

for all the eigenvalues λ of A.

Proof. (i) Take an η so that $0 < \eta \leq \varepsilon$ and that $f_A(z) \neq 0$ for all z on the circle $C_\eta : |z - \lambda| = \eta$. Then there exists a $\delta > 0$ such that

$$\ell = \min \{|f_B(z)| \mid B \in U_\delta(A), \ z \in C_\eta \} > 0.$$

Put $D_\eta = \{ z \in \mathbb{C} \mid |z - \lambda| \leq \eta \}$.

Suppose that there exists a $B \in U_\delta(A)$ such that

$$f_B(z) \neq 0 \text{ for all } z \in D_\eta.$$

Then we will get a contradiction as follows. Put $B(t) = A + t(B - A)$ for $0 \leq t \leq 1$ and define t_0 by

$$t_0 = \inf \{ t \in [0, 1] \mid f_{B(t)}(z) \neq 0 \text{ for all } z \in D_\eta \}.$$

Then there is a decreasing sequence $\{t_k\}$ in $[t_0, 1]$ such that $\lim_{k \to \infty} t_k = t_0$ and that $g_k(z) = 1/f_{B(t_k)}(z)$ are holomorphic functions on D_η. We have

$$|g_k(z)| \leq \frac{1}{\ell}$$

for $z \in D_\eta$ by the maximum principle. So we have $|f_{B(t_k)}(z)| \geq \ell$ for $z \in D_\eta$ and therefore $|f_{B(t_0)}(z)| \geq \ell$ for $z \in D_\eta$. Moreover if $t_0 > 0$, then there exists a $t \in (0, t_0)$ such that $f_{B(t)}(z) \neq 0$ for $z \in D_\eta$, contradicting the definition of t_0. So we have $t_0 = 0$ and $|f_A(z)| \geq \ell$ for $z \in D_\eta$. But this contradicts the assumption that $f_A(\lambda) = 0$.

(ii) If $|z| > mN(A)$, then we can define

$$(zI - A)^{-1} = \frac{1}{z} \left(I - \frac{1}{z}A \right)^{-1} = \frac{1}{z} \left(I + \frac{1}{z}A + \frac{1}{z^2}A^2 + \cdots \right)$$
since the right-hand side converges. So the eigenvalues \(\lambda \) of \(A \) satisfy
\[
|\lambda| \leq mN(A).
\]

Let \(G \) be a connected real semisimple Lie group. Let \(\sigma \) be an involution of \(G \) (automorphism of \(G \) of order two). Then there exists a Cartan involution \(\theta \) of \(G \) such that \(\sigma \theta = \theta \sigma \). Denote the corresponding involutions of \(g = \text{Lie}(G) \) by the same letters as usual. Let
\[
g = h \oplus q \quad \text{and} \quad g = k \oplus m
\]
denote the +1 and −1 eigenspace decomposition of \(g \) for the involutions \(\sigma \) and \(\theta \), respectively. Let \(\tau = \sigma \theta \). Then \(\tau \) is also an involution of \(G \). Let
\[
g = h' \oplus q'
\]
be the +1 and −1 eigenspace decomposition of \(g \) for \(\tau \). Then
\[
h' = (k \cap h) \oplus (m \cap q) \quad \text{and} \quad q' = (k \cap q) \oplus (m \cap h).
\]

Define two symmetric subgroups \(H \) and \(H' \) as the connected components of \(G_{\sigma} \) and \(G_{\tau} \), respectively, containing the identity. Then \(H \) and \(H' \) are called “associated” \((\text{[B1], [M1]})) \).

The double coset decomposition \(H \backslash G/L \), where \(H \) and \(L \) are arbitrary two symmetric subgroups of \(G \), is studied in \(\text{[M5]} \). Of course we can apply it to the pair of the symmetric subgroups \((H, H') \).

Remark 2.2. \(K_C \) and \(G_R \) are associated in the complex Lie group \(G_C \). So we can consider the setting in Section 1 as a special one.

We defined a generalization of the Akhiezer-Gindikin domain in \(\text{[M7]} \) as follows. Let \(t \) be a maximal abelian subspace of \(k \cap q \). Then we can define the root space
\[
g_C(t, \alpha) = \{ X \in g_C | [Y, X] = \alpha(Y)X \text{ for all } Y \in t \}
\]
for any linear form \(\alpha : t \to i\mathbb{R} \). Here \(g_C = g \oplus ig \) is the complexification of \(g \). Put
\[
\Sigma = \Sigma(g_C, t) = \{ \alpha \in it^* - \{0\} | g_C(t, \alpha) \neq \{0\} \}.
\]
Then \(\Sigma \) satisfies the axiom of the root system \((\text{[R]}, \text{Theorem 5}) \). Since \(\theta(Y) = Y \) for all \(Y \in t \), we can decompose \(g_C(t, \alpha) \) into the +1, −1-eigenspaces for \(\theta \) as
\[
g_C(t, \alpha) = \mathfrak{t}_C(t, \alpha) \oplus m_C(t, \alpha).
\]
Define a subset
\[
\Sigma(m_C, t) = \{ \alpha \in it^* - \{0\} | m_C(t, \alpha) \neq \{0\} \}
\]
of \(\Sigma \) and put
\[
t^+ = \{ Y \in t | |\alpha(Y)| < \frac{\pi}{2} \text{ for all } \alpha \in \Sigma(m_C, t) \}.
\]

Then we define a generalization of the Akhiezer-Gindikin domain \(D \) in \(G \) by
\[
D = H'T^+H,
\]
where \(T^+ = \exp t^+ \). (We showed in \(\text{[M7]}, \text{Proposition 1}, \text{that } D \text{ is open in } G \).) The following assertion is already proved in the proof of \(\text{[M7], Proposition 2} \).

Lemma 2.3. \(D \cap T = T^+(T \cap H) \).
of g for every element $x \in G$. Then we defined the “Jordan decomposition” $x = (\exp X_n)x_s$ of the element x so that $f_x = f_x, \text{Ad}(\exp(-2X_n)) = \text{Ad}(\exp(-2X_n))f_x$, is the usual multiplicative Jordan decomposition of the automorphism f_x of g and that X_n is a nilpotent element in $q' \cap \text{Ad}(x_s)q$. It is shown in [M5], Proposition 3, that

\[(2.3) \quad H'x_sH \subset (H'xH)^{cl}.
\]

Let ∂D denote the boundary of D in G and let ∂T^+ denote the boundary of T^+ in T.

Lemma 2.4. If $x \in \partial D$, then $H'x_sH = H'aH$ for some $a \in \partial T^+$.

Proof. If $y = h'th \in D$ with $h' \in H'$, $t \in T^+$ and $h \in H$, then

\[f_y = \tau \text{Ad}(h'th)\sigma \text{Ad}(h'th)^{-1} = \text{Ad}(h')\tau \sigma \text{Ad}(t)^{-2} \text{Ad}(h')^{-1} = \text{Ad}(h')\theta \text{Ad}(t)^{-2} \text{Ad}(h')^{-1}.
\]

Hence the absolute values of the eigenvalues of f_y are all equal to one.

Let x be an element of ∂D. By the continuity of the eigenvalues shown in Lemma 2.1(i), the absolute values of the eigenvalues of f_x are all one. This also holds for f_x. So if we decompose $x_s = (\exp X_p)x_k$ (polar decomposition) as in [M5], Section 4.2, then we have $X_p = 0$ and $x_k = x_s$. Let us call such an element x_s “elliptic” following the terminology in [FH]. We can show that $y \in G$ is elliptic if and only if y is contained in $H'\theta H$ by the arguments in the proof of [M5], Theorem 2. Write $x_s = h'ah$ with some $h' \in H'$, $a \in T$ and $h \in H$. By (2.3) x_s is contained in ∂D. Hence a is also contained in ∂D. We have only to show $a \in (D \cap T)^{cl}$ in view of Lemma 2.3.

Since $f_a = \tau \text{Ad}(a)\sigma \text{Ad}(a)^{-1}$ is semisimple, we can decompose g as

\[(2.4) \quad g = (b + \text{Ad}(a)h) \oplus (q' \cap \text{Ad}(a)q)
\]

by [M5], Lemma 1. Let $B(\cdot, \cdot)$ denote the Killing form on g and let $B_0(\cdot, \cdot)$ denote the positive definite bilinear form on g defined by $B_0(X, Y) = -B(X, \theta Y)$. Since $a \in D^{cl}$, by (2.4) we can take an element Y of $q' \cap \text{Ad}(a)q$ such that $y = (\exp Y)a \in D$ and that $B_0(Y, Y) < \varepsilon^2$ for an arbitrary positive real number ε. Since

\[f_y = \tau \text{Ad}(y)\sigma \text{Ad}(y)^{-1} = f_a \text{Ad}(\exp 2Y)^{-1} = \text{Ad}(\exp 2Y)^{-1} f_a
\]

is elliptic, it follows that $\text{Ad}(\exp 2Y)$ is elliptic. Taking ε sufficiently small, we may assume that Y is semisimple and that the eigenvalues of $\text{ad}(Y)$ are pure imaginary. Hence there exists an element $h \in H' \cap \text{Ad}(a)H$ such that $Y' = \text{Ad}(h)Y$ is contained in t which is a compact Cartan subset of $q' \cap \text{Ad}(a)q$ (cf. [OM], Corollary of Theorem 2). Since $(\exp Y')a \in D \cap T$ and since $B_0(Y', Y') \leq B_0(Y, Y) < \varepsilon^2$ by the following lemma, we have proved $a \in (D \cap T)^{cl}$. \hfill \square

Lemma 2.5. If $Y = \text{Ad}(g)Y'$ for some $g \in G$ and $Y' \in t$, then $B_0(Y', Y') \leq B_0(Y, Y)$.

Proof. Since $B_0(\text{Ad}(k)Y', \text{Ad}(k)Y') = B_0(Y', Y')$ for $k \in K$, we may assume $g = \exp Z$ for some $Z \in \mathfrak{m}$. Write $Y' = \sum \lambda Y_{\lambda}$ with λ-eigenvectors Y_{λ} for $\text{ad}(Z)$ ($\lambda \in \mathbb{R}$). Since $Y' \in \mathfrak{k}$, we have $\theta Y_{\lambda} = Y_{-\lambda}$. Hence

$$B_0(Y, Y) = B_0(\exp Z Y', \exp Z Y') = \sum \lambda e^{2\lambda} B_0(Y_{\lambda}, Y_{\lambda})$$

$$= B_0(Y_0, Y_0) + \sum_{\lambda > 0} (e^{2\lambda} + e^{-2\lambda}) B_0(Y_{\lambda}, Y_{\lambda})$$

$$\geq B_0(Y_0, Y_0) + \sum_{\lambda > 0} 2B_0(Y_{\lambda}, Y_{\lambda}) = B_0(Y', Y'). \quad \Box$$

Lemma 2.6. Every $x \in \partial D$ is contained in the boundary of the complement $G - D^{cl}$ of D^{cl} in G.

Proof. First assume that x is semisimple. Then we may assume $x = a = \exp Y$ with $Y \in \partial \mathfrak{t}^+$ by Lemma 2.4. There exists an $\alpha \in \Sigma$ such that $\alpha(Y) = \pi i/2$ and that $m_\mathcal{C}(t, \alpha) \neq \{0\}$ by the definition of \mathfrak{t}^+. Since $X \mapsto \tau X$ defines a conjugation of $m_\mathcal{C}(t, \alpha)$, we can take a non-zero element X of $m_\mathcal{C}(t, \alpha)$ such that $\tau X = -X$. Then $\mathfrak{v} = \mathfrak{z} + \mathfrak{x}$ is a non-zero element of $\mathfrak{g}^\mathfrak{t} \cap \mathfrak{m} \cap \mathfrak{q}$. Since

$$f_{\exp(tz)a} = \tau \text{Ad}(\exp tz) \text{Ad}(a) \sigma \text{Ad}(a)^{-1} \text{Ad}(\exp tZ)^{-1}$$

$$= \text{Ad}(\exp tZ)^{-1} \tau \text{Ad}(a) \sigma \text{Ad}(a)^{-1} \text{Ad}(\exp tZ)^{-1}$$

$$= \text{Ad}(\exp tZ)^{-1} f_a \text{Ad}(\exp tZ)^{-1} = f_a \text{Ad}(\exp tZ)^{-2} = \text{Ad}(\exp tZ)^{-2} f_a$$

and since $\text{Ad}(\exp tZ)^{-2}$ has a non-trivial real eigenvalue for $t \in \mathbb{R}^+$, it follows that $(\exp tZ)a$ is a non-elliptic semisimple element and hence $(\exp tZ)a \notin D^{cl}$ for $t \in \mathbb{R}^+$. Thus $a \in \partial (G - D^{cl})$.

Next assume that x is not semisimple. Then we may assume that $x = (\exp X_n)a$ with an $a \in \partial \mathfrak{t}^+$ and a nilpotent element $X_n \neq 0$ in $\mathfrak{q}^\mathfrak{t} \cap \text{Ad}(a) \mathfrak{q}$ by Lemma 2.4. By a generalization of the Jacobson-Morozov theorem, there exist a $Y \in \mathfrak{h}^\mathfrak{t} \cap \text{Ad}(a) \mathfrak{h}$ and an $X_n' \in \mathfrak{q}^\mathfrak{t} \cap \text{Ad}(a) \mathfrak{q}$ such that

$$[Y, X_n] = 2X_n, \quad [Y, X_n'] = -2X_n' \quad \text{and} \quad [X_n, X_n'] = Y$$

([KR], Proposition 4; cf. also [Sc], Section 1). For $t \in \mathbb{R}^+$ we have

$$[X_n + t^2 X_n', Y - \frac{1}{t} X_n + t X_n'] = 2t(Y - \frac{1}{t} X_n + t X_n').$$

Hence $\text{Ad}(\exp(X_n + t^2 X_n'))$ is semisimple and it has an eigenvalue e^{2t}. From the same argument as in the first case it follows that $(\exp(X_n + t^2 X_n')) a$ is a non-elliptic semisimple element for $t \in \mathbb{R}^+$. Hence $x = (\exp X_n)a \in \partial (G - D^{cl})$. \qed

Let $\Sigma(m_\mathcal{C}, t)$ be as in (2.2) and similarly define another subset $\Sigma(t_\mathcal{C}, t)$ of Σ by

$$\Sigma(t_\mathcal{C}, t) = \{ \alpha \in it^+ - \{0\} \mid t_\mathcal{C}(t, \alpha) \neq \{0\} \}. $$

For $\alpha \in \Sigma$ and $k \in \mathbb{R}$ let $p_{\alpha, k}$ denote the hyperplane in t defined by

$$p_{\alpha, k} = \{ Y \in t \mid \alpha(Y) = k \pi i \}.$$

Define families \mathcal{H}_+ and \mathcal{H}_- of hyperplanes by

$$\mathcal{H}_+ = \{ p_{\alpha, k} \mid \alpha \in \Sigma(t_\mathcal{C}, t), \ k \in \mathbb{Z} \} \quad \text{and} \quad \mathcal{H}_- = \{ p_{\alpha, k} \mid \alpha \in \Sigma(m_\mathcal{C}, t), \ k \in \frac{1}{2} + \mathbb{Z} \},$$

respectively.
respectively. Put $\mathcal{H} = \mathcal{H}_+ \sqcup \mathcal{H}_-$. Then the family \mathcal{H} of hyperplanes defines a family \mathcal{E} of Euclidean cells consisting of cells Δ which are maximal connected subsets of t satisfying the condition

$$\Delta \subset p \text{ or } \Delta \cap p = \emptyset \text{ for all } p \in \mathcal{H}.$$

We have the cellular decomposition $\mathbb{R}^n = \bigcup_{\Delta \in \mathcal{E}} \Delta$. Since t^+ is bounded ([M7], Lemma 1), there exists a finite subset B of \mathcal{E} such that $\partial t^+ = \bigcup_{\Delta \in B} \Delta$. For $\Delta \in \mathcal{E}$ let Σ_+^Δ denote the subset of Σ given by

$$\Sigma_+^\Delta = \{ \alpha \in \Sigma \mid \Delta \subset p_{\alpha,k} \text{ for some } p_{\alpha,k} \in \mathcal{H}_+ \}$$

and put $\Sigma_\Delta = \Sigma_+^\Delta \sqcup \Sigma_-^\Delta$.

Let Y be an element of a cell Δ and put $a = \exp Y$. We can prove the following lemma by the same argument as in [M7], Lemma 2.

Lemma 2.7. $g^\mathfrak{t}_C = \mathfrak{z}_C(t) \oplus \bigoplus_{\alpha \in \Sigma_+^\Delta} \mathfrak{t}_C(t, \alpha) \oplus \bigoplus_{\alpha \in \Sigma_-^\Delta} \mathfrak{m}_C(t, \alpha)$.

Proof. By (2.1) we have the decomposition

$$g_C = \bigoplus_{\alpha \in \Sigma(t)} (\mathfrak{t}_C(t, \alpha) \oplus \mathfrak{m}_C(t, \alpha)).$$

If $X \in \mathfrak{t}_C(t, \alpha)$, then $f_\alpha(X) = \text{Ad}(a)^{-2}(X) = e^{-2\alpha(Y)}X$. If $X \in \mathfrak{m}_C(t, \alpha)$, then $f_\alpha(X) = \text{Ad}(a)^{-2}(X) = -e^{-2\alpha(Y)}X$. So the assertion is clear. □

This lemma implies that

$$\mathfrak{l}_\Delta = g^{f_\Delta} = (\mathfrak{b} \cap \text{Ad}(a)\mathfrak{h}) \oplus (\mathfrak{q} \cap \text{Ad}(a)\mathfrak{q})$$

is independent of the choice of Y in Δ. Let \mathfrak{s}_Δ denote the center of \mathfrak{l}_Δ and let $\mathfrak{z}_\Delta = [\mathfrak{l}_\Delta, \mathfrak{l}_\Delta]$ denote the semisimple part of \mathfrak{l}_Δ. Then we have $\mathfrak{l}_\Delta = \mathfrak{z}_\Delta \oplus \mathfrak{s}_\Delta$ and therefore

$$\mathfrak{q} \cap \text{Ad}(a)\mathfrak{q} = \mathfrak{l}_\Delta \cap \mathfrak{q} = (\mathfrak{z}_\Delta \cap \mathfrak{q}) \oplus (\mathfrak{s}_\Delta \cap \mathfrak{q}).$$

By Lemma 2.7 we have

$$\mathfrak{z}_\Delta \cap \mathfrak{q} \subset \mathfrak{z}_C(t) \cap \mathfrak{q} = t.$$

Hence we can write

$$\mathfrak{z}_\Delta \cap \mathfrak{q} = \{ Y \in \mathfrak{t} \mid \alpha(Y) = 0 \text{ for all } \alpha \in \Sigma_\Delta \}.$$

This implies that

$$\mathfrak{z}_\Delta \cap \mathfrak{q} \text{ is the tangent space of } \Delta.$$

We see that the nilpotent variety in $\mathfrak{s}_\Delta \cap \mathfrak{q}$ is decomposed into a finite number of $\mathfrak{N}_C \cap (\mathfrak{s}_\Delta \cap \mathfrak{q})_0$-orbits, where \mathfrak{s}_Δ denotes the analytic subgroup of G for \mathfrak{s}_Δ. (It is shown in [KR], Theorem 2, that there are a finite number of nilpotent $((\mathfrak{S}_\Delta \cap H')_0)_{\mathcal{C}}$-orbits \mathcal{N}_C in $(\mathfrak{s}_\Delta \cap \mathfrak{q})_{\mathcal{C}}$. For each \mathcal{N}_C it follows from Whitney’s theorem for real algebraic varieties ([Wh], Theorem 3.3 in [PR]) that $\mathcal{N}_C \cap (\mathfrak{s}_\Delta \cap \mathfrak{q})_0$ consists of a finite number of connected components which are $(\mathfrak{S}_\Delta \cap H')_0$-orbits.)

For $\Delta \in \mathcal{B}$ let \mathcal{N}_Δ denote the union of the nilpotent $(\mathfrak{S}_\Delta \cap H')_0$-orbits of codimension d which are contained in the closure of the set $(\mathfrak{s}_\Delta \cap \mathfrak{q})_{\mathcal{C}}$ of the elliptic elements in $\mathfrak{s}_\Delta \cap \mathfrak{q}$. Define a subset

$$M(\Delta, d) = H'(\exp \mathcal{N}_\Delta)(\exp \Delta)H$$

of G.

Proposition 2.8. (i) $\partial D = \bigcup_{d} M(\Delta, d)$.
(ii) If $N_d \neq \emptyset$, then $M(\Delta, d)$ is a locally closed d-codimensional submanifold of G consisting of a finite number of connected components.
(iii) $\partial D = (\bigcup_{d} M(\Delta, 1))^{cl}$.

Proof. (i) Let x be an element of ∂D. By Lemma 2.4 x is contained in $H^\ell(\exp X_n) a H$ for some $a \in \partial T^+$ and a nilpotent element X_n in $\mathfrak{s}_\Delta \cap q'$. Here we write $a = \exp Y$ with $Y \in \Delta \subset \partial T^+$. We will show that X_n is contained in the closure of $(\mathfrak{s}_\Delta \cap q')_{ell}$. Since $S_\Delta \cap H' \subset H' \cap aH^{-1}$, we can take an $S_\Delta \cap H'$-conjugate of X_n so that X_n is sufficiently close to the origin. If X_n is not on the boundary of $(\mathfrak{s}_\Delta \cap q')_{ell}$, then there exists a neighborhood U of X_n in $\mathfrak{s}_\Delta \cap q'$ consisting of non-elliptic elements. Take a neighborhood V of 0 in $\mathfrak{s}_\Delta \cap q'$. Then it follows from (2.4) and (2.5) that the set $H^\ell(\exp U)(\exp V) a H$ contains a neighborhood of $y = (\exp X_n) a$ in G consisting of non-elliptic elements. Hence y is not contained in the closure of D, contradicting $x \in \partial D$. Thus we have proved that X_n is on the boundary of $(\mathfrak{s}_\Delta \cap q')_{ell}$. Conversely, if X_n is on the boundary of $(\mathfrak{s}_\Delta \cap q')_{ell}$, then it is clear that $y = (\exp X_n) a \in \partial D$.

(ii) It follows from (2.4), (2.5) and (2.6) that the codimension of $M(\Delta, d)$ in G equals the codimension d of N_d in $\mathfrak{s}_\Delta \cap q'$. Considering the left H^ℓ-action and the right H-action, we have only to show that $M(\Delta, d)$ is locally closed at $y = \exp X_n \exp Y_0$ for every $Y_0 \in \Delta$ and every $X_n \in N_d$. Furthermore taking an $S_\Delta \cap H'$-conjugate, we may assume that X_n is sufficiently close to 0. Let V be a compact neighborhood of Y_0 in Δ. Then the non-trivial eigenvalues of $f_{\exp Y}$ for $y \in V$ are contained in a compact subset Λ of $U(1) = \{z \in \mathbb{C} \mid |z| = 1\}$ such that $1 \notin \Lambda$. By Lemma 2.1(ii) we can take a neighborhood U of 0 in $\mathfrak{s}_\Delta \cap q'$ such that the eigenvalues of $\text{Ad} \exp(-2Z)$ are not contained in Λ^{-1} for all $Z \in U$. By (2.4) and (2.5) we have only to show that $$(\exp U \exp V) \cap M(\Delta, d) = \exp U \cap N_d \exp V.$$ Suppose $Z \in U$, $Y \in V$ and $\exp Z \exp Y \in M(\Delta, d)$. Then we have only to show $Z \in N_d$.

Let \mathfrak{g}_C^λ denote the λ-eigenspace for $f_{\exp Y}$. Then \mathfrak{g}_C is decomposed as $\mathfrak{g}_C = \bigoplus_\lambda \mathfrak{g}_C^\lambda$ since $f_{\exp Y}$ is semisimple. Since $$f_{\exp Z \exp Y} = f_{\exp Y} \text{Ad} \exp(-2Z) = \text{Ad} \exp(-2Z) f_{\exp Y},$$ we can furthermore decompose the spaces \mathfrak{g}_C^λ into the generalized eigenspaces as $\mathfrak{g}_C^\lambda = \bigoplus_\mu \mathfrak{g}_C^{\lambda, \mu}$, where $\mathfrak{g}_C^{\lambda, \mu} = \{X \in \mathfrak{g}_C^\lambda \mid (\text{Ad} \exp(-2Z) - \mu I)^k X = 0 \text{ for some } k\}$. Note that every $X \in \mathfrak{g}_C^{\lambda, \mu}$ is a generalized eigenvector for $f_{\exp Z \exp Y}$ with the eigenvalue $\lambda \mu$. Since we assume that $\mu \notin \Lambda^{-1}$, we have $\lambda \mu = 1 \implies \lambda = \mu = 1$.

This implies that the generalized eigenspace \(g_c^{(1)} \) of \(f_{\exp Z} \exp Y \) for the eigenvalue 1 is contained in \(g_c^{(1)} = (1\Delta)_c \). On the other hand, the condition \(\exp Z \exp Y \in M(\Delta, d) = H'(\exp N_d)(\exp \Delta)H \) implies that

\[
(2.7) \quad f_{\exp Z} \exp Y \text{ is conjugate to } f_{(\exp W)b}.
\]

for some \(W \in N_d \) and \(b \in \exp \Delta \). So we have

\[
\dim g_c^{(1)} = \dim g_c^{(b)} = \dim (1\Delta)_c.
\]

Hence we have

\[
g_c^{(1)} = (1\Delta)_c.
\]

This implies that the linear map \(\text{Ad} \exp(-2Z) : (1\Delta)_c \to (1\Delta)_c \) has the unique eigenvalue 1. Hence \(\text{Ad} \exp(-2Z) \) is unipotent on \((1\Delta)_c \) and therefore \(Z \in \mathfrak{s}_\Delta \cap q' \) is nilpotent.

It follows from (2.7) that

\[
\dim g_c^{(\exp Z) \exp Y} = \dim g_c^{(\exp W)b}.
\]

Since \(g_c^{(\exp Z) \exp Y} \) is contained in \(g_c^{(1)} = g_c^{(1)} = (1\Delta)_c \), we have

\[
g_c^{(\exp Z) \exp Y} = (1\Delta)_{\exp Z} = (1\Delta)_{c}^{Z} = \{ X \in l_c \mid [X, Z] = 0 \}.
\]

Similary we also have

\[
g_c^{(\exp W)b} = (1\Delta)_{c}^{W} = \{ X \in l_c \mid [X, W] = 0 \}.
\]

Hence we have \(\dim g_c^{(1\Delta)_{c}^{Z}} = \dim g_c^{(1\Delta)_{c}^{W}} \) and therefore \(\dim g_c^{(\mathfrak{s}_\Delta)_{c}^{Z}} = \dim g_c^{(\mathfrak{s}_\Delta)_{c}^{W}} \). This implies that

\[
\dim \text{Ad}(S\mathfrak{d})_{c}Z = \dim \text{Ad}(S\mathfrak{d})_{c}W.
\]

By [KR], Proposition 5, we have

\[
\dim \text{Ad}(S\mathfrak{d} \cap H')_{c}Z = \frac{1}{2} \dim \text{Ad}(S\mathfrak{d})_{c}Z = \frac{1}{2} \dim \text{Ad}(S\mathfrak{d})_{c}W = \dim \text{Ad}(S\mathfrak{d} \cap H')_{c}W.
\]

So we have

\[
(2.8) \quad \dim \text{Ad}(S\mathfrak{d} \cap H')Z = \dim \text{Ad}(S\mathfrak{d} \cap H')W.
\]

Since \(W \in N_d \), it is contained in the closure of \((\mathfrak{s}_\Delta \cap q')_{\text{cl}} \). Hence \(\exp Z \exp Y \in H'(\exp W)aH \) is contained in \(\partial D \). By the argument in the proof of (i), we see that \(Z \) is contained in the closure of \((\mathfrak{s}_\Delta \cap q')_{\text{cl}} \). Combining with (2.8), we have proved \(Z \in N_d \).

(iii) Let \(x \) be an element of \(M(\Delta, d) \subset \partial D \) such that \(d \geq 2 \). Let \(U \) be a neighborhood of \(x \) in \(G \). Suppose that \(U \) does not intersect \(\bigcup_{\Delta \in B} M(\Delta, 1) \). Then \(U - \partial D \) is connected because \(U \cap \partial D \) is a finite union of locally closed submanifolds of codimension greater than two. But \(U \cap D \) and \(U - D^{c} \) are both non-empty open sets by Lemma 2.6, a contradiction. Thus \(\partial D = (\bigcup_{\Delta \in B} M(\Delta, 1))^{c} \).

\[
\square
\]

Remark 2.9. (i) It is known that \(d \geq \dim(\mathfrak{s}_\Delta \cap \mathfrak{t}) \) ([KR], Proposition 9). Hence

\[
M(\Delta, 1) \neq \emptyset
\]

only when the rank of \(\Sigma_\Delta = \Sigma_+ \cup \Sigma_- \) is one.

(ii) In general we can prove that \(\text{codim}_{C}H^{x}H \geq \dim \mathfrak{t} \) for any \(x = (\exp X_{u})x_{s} \in G \). So we may call \(x = (\exp X_{u})x_{s} \) regular if \(\text{codim}_{C}H^{x}H = \dim \mathfrak{t} \). Regular semisimple elements studied in [ML] are contained in the set of regular elements.
The author is grateful to Michael Otto for suggesting the existence of this notion of regularity.

(iii) Suppose that \(m_C(t, \alpha) \neq 0 \) for all the longest roots \(\alpha \) in \(\Sigma \). Since all the roots in \(\Sigma \) are contained in the convex hull spanned by the longest roots, \(t^+ \) is written as
\[
 t^+ = \{ Y \in t \mid |\alpha(Y)| < \frac{\pi}{2} \text{ for all the longest roots } \alpha \in \Sigma \}.
\]
So the condition \(M(\Delta, 1) \neq \emptyset \) for \(\Delta \in B \) implies that
\[
 \Sigma_\Delta = \Sigma^-_\Delta = \{ \pm \alpha \}
\]
for some longest root \(\alpha \). Suppose furthermore that all the longest roots in \(\Sigma \) are mutually \(W_{K \cap H} \)-conjugate. Then we can write
\[
 \bigcup_{\Delta \in B} M(\Delta, 1) = \bigcup_{\Delta \in B_\alpha} M(\Delta, 1)
\]
with a longest root \(\alpha \) in \(\Sigma \), where
\[
 B_\alpha = \{ \Delta \in B \mid \alpha(Y) = \frac{\pi}{2} \text{ for all } Y \in \Delta \}.
\]
So we have \(\partial D = (\bigcup_{\Delta \in B_\alpha} M(\Delta, 1))^c \).

3. Construction of parabolic subgroups

Let \(\alpha \) be a root in \(\Sigma(m_C, t) \) and suppose that \(2\alpha \notin \Sigma \). Let \(s_C \) be the subalgebra of \(g_C \) generated by \(m_C(t, \alpha) \oplus m_C(t, -\alpha) \). Since \([m_C(t, \alpha), m_C(t, -\alpha)] \subset \mathfrak{z}_C(t) \) and since \(\mathfrak{z}_C(t), m_C(t, \pm \alpha) \subset m_C(t, \pm \alpha) \), we have
\[
 s_C \subset \mathfrak{z}_C(t) + m_C(t, \alpha) \oplus m_C(t, -\alpha).
\]
Clearly \(s = s_C \cap g \) is a real form of \(s_C \).

Proposition 3.1. \((s, s^+) \cong (so(2, n), so(1, n)) \), where \(n = \dim_C m_C(t, \alpha) \).

Proof. Let \(X \mapsto \overline{X} \) denote the conjugation with respect to the real form \(g \). Since \(X \mapsto \tau(X) \) is a conjugation of \(m_C(t, \alpha) \), we can take a non-zero element \(X \in m_C(t, \alpha) \) such that \(\tau(X) = \overline{X} \). Put \(Y_1 = [X, \tau(X)] = [X, \overline{X}] \). Then we have
\[
 Y_1 \in \mathfrak{z}_{GC}(t) \cap t_C \cap q_C \cap q = \mathfrak{z}_{GC}(t) \cap i(t \cap q) = it.
\]
On the other hand, we have
\[
 B(Y, Y_1) = B(Y, [X, \overline{X}]) = B([Y, X], \overline{X}) = \alpha(Y)B(X, \overline{X})
\]
for \(Y \in t_C \). Since the Hermitian form \(B(X, \overline{X}) \) is positive definite on \(m_C \), we see that \(Y_1 \neq 0 \). Taking \(Y = Y_1 \), we have
\[
 \alpha(Y_1) > 0.
\]
Since \(Y_1 \in s_C \) and since \([Y_1, m_C(t, \pm \alpha)] = m_C(t, \pm \alpha) \) by (3.2), the spaces \(m_C(t, \pm \alpha) \) are contained in the derived ideal \([s_C, s_C] \) of \(s_C \). So we have \(s_C = [s_C, s_C] \) and therefore \(s_C \) is semisimple. If \(Z \in s_C \cap t_C \) satisfies \(\alpha(Z) = 0 \), then \(Z \) is contained in the center of \(s_C \) and hence \(Z = 0 \). So we have proved
\[
 s_C \cap t_C = CY_1.
\]
We will show that \(CY_1 \) is maximal abelian in \(s_C \cap q_C \). Let \(X \) be an element in \(s_C \cap q_C \) such that \([Y_1, X] = 0 \). If \(Y \in t \) satisfies \(\alpha(Y) = 0 \), then \([Y, X] = 0 \) because \(s_C \) is generated by \(m_C(t, \alpha) \oplus m_C(t, -\alpha) \). Hence \(X \) is contained in the centralizer
of t. By (3.1) X is contained in $j_{\mathfrak{t}_{\mathfrak{c}}}(t)$. Hence $X \in \mathfrak{t}_{\mathfrak{c}} \cap q'_{\mathfrak{c}} = \mathfrak{t}_{\mathfrak{c}} \cap q_{\mathfrak{c}}$. Since t is maximal abelian in $\mathfrak{t} \cap q$, we have $X \in \mathfrak{t}_{\mathfrak{c}}$. It follows from (3.3) that $X \in CY_1$.

Thus the symmetric pair $(\mathfrak{g}_{\mathfrak{c}}, \mathfrak{g}_{\mathfrak{c}} \cap b'_{\mathfrak{c}})$ is rank one and we have the restricted root space decomposition

$$\mathfrak{s}_{\mathfrak{c}} = j_{\mathfrak{t}_{\mathfrak{c}}}(t) + m_{\mathfrak{c}}(t, \alpha) + m_{\mathfrak{c}}(t, -\alpha)$$

with respect to CY_1. We have such a restricted root space decomposition only when $(\mathfrak{s}_{\mathfrak{c}}, \mathfrak{g}_{\mathfrak{c}} \cap b'_{\mathfrak{c}}) \cong (\mathfrak{so}(n + 2, \mathbb{C}), \mathfrak{so}(n + 1, \mathbb{C}))$, where $n = \dim Cm_{\mathfrak{c}}(t, \alpha)$.

By the classification in [B], we have

$$(s, s^r) \cong (\mathfrak{so}(p, q), \mathfrak{so}(p - 1, q)) \quad (q = n + 2 - p)$$

with some $p = 1, \ldots, n + 1$ since s is non-compact. (This can also be deduced from [M] by considering two commuting involutions τ and θ on the compact real form $(\mathfrak{s} \cap \mathfrak{t}) \oplus i(\mathfrak{s} \cap \mathfrak{m}) \cong \mathfrak{so}(n + 2)$.) If $p = 1$, then we have $s \cap \mathfrak{t} = s \cap b'$, a contradiction to $\Re Y_1 = s \cap t \subseteq \mathfrak{t} \cap q'$. Hence $p \geq 2$. Taking $s \cap t = \mathbb{R}(E_{12} - E_{21}) \subseteq s \cap q'$, we can compute

$$\dim Cm_{\mathfrak{c}}(t, \alpha) \cap \mathfrak{t}_{\mathfrak{c}} = p - 2.$$

Since $\mathfrak{s}_{\mathfrak{c}}(t, \alpha) \subseteq m_{\mathfrak{c}}$, we have $p = 2$.

For $Z \in m$ we define a parabolic subgroup P_Z of G by

$$P_Z = Z_G(Z) \exp n_Z,$$

where $n_Z = \bigoplus_{\lambda > 0} \{ X \in \mathfrak{g} \mid [Z, X] = \lambda X \}$. For $\alpha \in \Sigma$ let Y_α denote the unique element in t such that $\alpha(Y_\alpha) = \pi i/2$ and that $B(Y_\alpha, t_\alpha) = \{0\}$, where $t_\alpha = \{ Y \in t \mid \alpha(Y) = 0 \}$. Put $a_\alpha = \exp Y_\alpha$.

Theorem 3.2. Suppose that $m_{\mathfrak{c}}(t, \alpha) \neq 0$ for all the longest roots α in Σ and that all the longest roots in Σ are mutually conjugate under $W_K \cap H(t)$. Take a longest root α in Σ and a non-zero element Z of $(m_{\mathfrak{c}}(t, \alpha) + m_{\mathfrak{c}}(t, -\alpha)) \cap b'$. Then we have:

(i) $H'P_{\pm Z}$ and $Ha_\alpha^{-1}P_{\pm Z}$ are closed in G.

(ii) For any element x in the boundary of D, we have

$$xHa_\alpha^{-1}P_{\pm Z} \cap H'P_{\pm Z} = \emptyset \quad \text{or} \quad xHa_\alpha^{-1}P_{\pm Z} \cap H'P_{\pm Z} \neq \emptyset.$$

(iii) Assume moreover that $\dim m_{\mathfrak{c}}(t, \alpha) \geq 2$ or that there exists a $t \in T \cap H$ such that $\text{Ad}(t)Z = -Z$. Then for any element x in the boundary of D, we have

$$xHa_\alpha^{-1}P_{\pm Z} \cap H'P_{\pm Z} \neq \emptyset.$$

Proof. (i) Since $Z \in m \cap b'$, it follows that $H' \cap P_Z$ is a parabolic subgroup of H'. Hence $H'P_Z/P_Z \cong H'/H' \cap P_Z$ is compact. This implies that $H'P_Z$ is closed in G. Replacing Z by $-Z$, we see that $H'P_{-Z}$ is also closed in G.

Identify s with $\mathfrak{so}(2, n)$ as in Proposition 3.1. Then we have

$$s \cap t = \mathbb{R}(E_{21} - E_{12}),$$

where E_{jk} denote the matrix units. We can assume that $\alpha \in \Sigma$ satisfies $\alpha : y(E_{21} - E_{12}) \mapsto iy$. Then we have $Y_\alpha = \frac{\pi}{2}(E_{21} - E_{12})$ and therefore the adjoint action of $a_\alpha = \exp Y_\alpha$ on s is equal to that of

$$\begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & I_n
\end{pmatrix}$$

on $\mathfrak{so}(2, n)$ by the identification $s \cong \mathfrak{so}(2, n)$.

On the other hand, Z is of the form
\[
\begin{pmatrix}
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & x_1 & \cdots & x_n \\
0 & x_1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & x_n & 0 & \cdots & 0
\end{pmatrix}
\]
with some $(x_1, \ldots, x_n) \in \mathbb{R}^n - \{0\}$. Put $Z_0 = E_{23} + E_{32}$. Then we see that Z is $Z_{K \cap H}(t)$-conjugate to rZ_0 with some $r \in \mathbb{R}^\times$. (We can take $r > 0$ if $n \geq 2$.) Since $P_cZ = P_Z$ for $c > 0$ and since we consider $\pm Z$, we may assume that $Z = Z_0$.

We see that
\[
a^{-1}_\alpha P_{\pm Z}a_\alpha = P_{\pm Z'},
\]
where
\[
Z' = \text{Ad}(a_\alpha)^{-1}Z = E_{13} + E_{31} \in s \cap m \cap q' = s \cap m \cap h.
\]

Hence $Ha^{-1}_\alpha P_{\pm Z} = HP_{\pm Z'}a_\alpha^{-1}$ are also closed in G by the same reason as for $H'P_{\pm Z}$.

(ii) If $h \in H$ and $h' \in H'$, then we have
\[
(h'xh)Ha^{-1}_\alpha P_{\pm Z} \cap H'P_{\pm Z} = h'(xH a^{-1}_\alpha P_{\pm Z} \cap H'P_{\pm Z}).
\]
So we may replace x by any element in the double coset $H'xH$.

By Remark 2.9(iii) we have $\partial D = (\bigcup_{\Delta \in \mathcal{B}_n} M(\Delta, 1))^{c I}$. First assume that $x \in M(\Delta, 1)$ for some $\Delta \in \mathcal{B}_n$. Then we have $x \in H'(\exp X_n)aH$ for some $a = \exp Y \in \exp \Delta$ and a nilpotent element X_n in $q' \cap \text{Ad}(a)q$. By the above remark we may assume that $x = (\exp X_n)a$.

By Lemma 2.7 we have
\[
g^{f_a}_C = \mathfrak{z}_C(t) \oplus \mathfrak{m}_C(t, \alpha) \oplus \mathfrak{m}_C(t, -\alpha).
\]

Since s_C is generated by $\mathfrak{m}_C(t, \alpha) \oplus \mathfrak{m}_C(t, -\alpha)$, it is contained in $g^{f_a}_C$. Since $[\mathfrak{z}_C(t), s_C] \subset s_C$, s_C is an ideal of $g^{f_a}_C$. Hence $s = s_C \cap g$ is an ideal of g^{f_a}. Let s^\perp denote the orthogonal complement of s in g^{f_a} with respect to the Killing form on g. Then s^\perp is an ideal of g^{f_a} contained in \mathfrak{z}_C. (Note that s may be smaller than s_C in Section 2.)

Since $g^{f_a} = s \oplus s^\perp$ and $s^\perp \subset \mathfrak{k}$, the nilpotent element X_n is contained in $s \cap q'$. By the identification in Proposition 3.1, X_n is of the form
\[
\begin{pmatrix}
0 & -x_1 & x_2 & \cdots & x_{n+1} \\
x_1 & 0 & & & \vdots \\
x_2 & & 0 & & \vdots \\
\vdots & & & \ddots & \vdots \\
x_{n+1} & & & & 0
\end{pmatrix}
\]
with $x_j \in \mathbb{R}$ such that $x_1^2 = x_2^2 + \cdots + x_{n+1}^2$. Since we can consider any element in the double coset $H'xH$, we can replace X_n by an $H' \cap aHa^{-1}$-conjugate. Since
\(\mathfrak{h}' \cap \text{Ad}(a)\mathfrak{h} = \mathfrak{g}^{f_n} \cap \mathfrak{h}' \supset \mathfrak{a} \cap \mathfrak{h}' \cong \mathfrak{so}(1, n) \), we may replace \(X_n \) by some \(\text{SO}(1, n)_0 \)-conjugate by the identification in Proposition 3.1. So we may assume

\[
X_n = \pm(E_{21} - E_{12} + \varepsilon E_{31} + \varepsilon E_{13}),
\]

where \(\varepsilon = \pm 1 \). (We may put \(\varepsilon = 1 \) if \(n \geq 2 \).) By computation we see that

\[
[Z, X_n] = \varepsilon X_n.
\]

Since \(\alpha(Y) = \alpha(Y_\alpha) = \pi i/2 \), we can write \(Y = Y_\alpha + Y' \) with \(Y' \in \mathfrak{t} \cap \mathfrak{s}^+ \). Hence we can write

\[
a = a_\alpha a'
\]

with \(a' = \exp Y' \).

Since \(X_\alpha \in \mathfrak{n}_{\varepsilon Z} \) and since \(Y' \in \mathfrak{s}^+ \subset \mathfrak{g}(Z) \), it follows that

\[
xH_\alpha^{-1}P_{\varepsilon Z} \supset x\alpha^{-1}P_{\varepsilon Z} = (\exp X_\alpha)a'P_{\varepsilon Z} = P_{\varepsilon Z}.
\]

Hence we have

\[
xH_\alpha^{-1}P_{\varepsilon Z} \cap H'P_{\varepsilon Z} \neq \emptyset
\]

for \(\varepsilon = 1 \) or \(-1 \).

Finally let \(y \) be an arbitrary element in the boundary of \(D \). If \(yH_\alpha^{-1}P_{\varepsilon Z} \cap H'P_{\varepsilon Z} = \emptyset \), then \(xH_\alpha^{-1}P_{\varepsilon Z} \cap H'P_{\varepsilon Z} = \emptyset \) for all the elements \(x \) in a neighborhood \(U_y \) of \(y \) because \(yH_\alpha^{-1}P_{\varepsilon Z}/P_{\varepsilon Z} \) and \(H'P_{\varepsilon Z}/P_{\varepsilon Z} \) are compact. But this contradicts (3.4) because \(\partial D = (\bigcup_{\Delta \in \mathfrak{g}_\alpha} M(\Delta, 1))^{\varepsilon t} \).

The assertion (iii) is also proved in (ii).

\[\square\]

4. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3. So we assume that \(G \) is a complex Lie group and that \(H' (= G_{R'}) \) is a real form of \(G \).

Since \(K \) is a compact real form of \(G \), we have

\[
\dim_{\mathbb{C}} \mathfrak{m}(t, \alpha) = \dim_{\mathbb{C}} \mathfrak{t}(t, \alpha) = \dim_{\mathbb{C}} \mathfrak{g}(t, \alpha)
\]

for all \(\alpha \in \Sigma(t) \). Hence we can identify \(\Sigma(\mathfrak{m}, t) \) with the usual restricted root system \(\Sigma = \Sigma(t) \) of \(H' \). It is also known that all the longest roots in \(\Sigma \) are mutually conjugate under \(\mathcal{W}_K \cap H(t) \) for simple \(H' \). So the conditions in Theorem 3.2 are satisfied.

Table 1 gives the well-known list of simple real Lie algebras \(\mathfrak{h}' \) and the multiplicities \(n \) of the longest restricted roots. (Assume \(p \leq q \).

In the following arguments we consider the complex structure only inside \(\mathfrak{g} \). It means that we do not consider the “complexification” of the complex Lie algebra \(\mathfrak{g} \) in order to avoid confusion.

We define a maximal abelian subspace \(\mathfrak{a} \) of \(\mathfrak{m} \cap \mathfrak{q} \) by

\[
\mathfrak{a} = \mathbb{R}Z \oplus it_\alpha,
\]

where \(t_\alpha = \{ Y \in \mathfrak{t} \mid \alpha(Y) = 0 \} \). Take a positive system \(\Sigma(\mathfrak{a})^+ \) of the restricted root system \(\Sigma(\mathfrak{a}) = \Sigma(\mathfrak{g}, \mathfrak{a}) \) so that

\[
\beta(Z) > 0 \text{ for all } \beta \in \Sigma(\mathfrak{a})^+.
\]

Then the pair \((\mathfrak{a}, \Sigma(\mathfrak{a})^+) \) defines a parabolic subgroup

\[
P = P(\mathfrak{a}, \Sigma(\mathfrak{a})^+)
\]

of \(G \) contained in \(P_Z \).
Let j be a maximal abelian subspace of m containing a. Let $\Sigma(j)^+$ be a positive system of the root system $\Sigma(j) = \Sigma(g,j)$ which is compatible with $\Sigma(a)^+$. Then the pair $(j, \Sigma(j)^+)$ defines a Borel subgroup

$$B = B(j, \Sigma(j)^+)$$

of G contained in P. Since $a = j \cap q$ is maximal abelian in $m \cap q$ and since $\Sigma(j)^+$ is τ-compatible, it follows that $H'B$ is closed in G and that HB is open in G \cite{MIT1, Proposition 1 and Proposition 2}. Since H is a complex symmetric subgroup of G, HB is the unique open H-B double coset in G and therefore $H'B$ is the unique closed H'-B double coset in G.

Remark 4.1. Since Theorem 1.3 concerns orbits on the flag manifold $X = G/B$, we may replace B with any conjugate pBp^{-1} for $p \in P$.

Let x be an element in the boundary of D. By Theorem 3.2 we have

\[(4.1)\quad xH a^{-1}_a P_Z \cap H' P_Z \neq \emptyset\]

or

\[(4.2)\quad xH a^{-1}_a P_{-Z} \cap H' P_{-Z} \neq \emptyset.\]

If G_R is of non-Hermitian type, then the condition in Theorem 3.2(iii) is satisfied by Lemma 7.2 in the appendix. Hence we have (4.1) in this case.

Assume (4.1). Then we will show that

\[(4.3)\quad x(Ha^{-1}_a pB)^{cl} \cap H'B \neq \emptyset\]
for any \(p \in P \). It follows from Lemma 7.1(i) that \(HP = HB \). So we have \(H'P = H'B \) (M2). Hence (4.3) is equivalent to

\[
x(Ha^{-1}_\alpha P)^{cl} \cap H'P \neq \emptyset
\]

because \((Ha^{-1}_\alpha P)^{cl} = (Ha^{-1}_\alpha pB)^{cl} P\). We have only to show that

\[
(Ha^{-1}_\alpha P)^{cl} = Ha^{-1}_\alpha P_Z
\]

which is equivalent to \((HP')^{cl} = HP_Z\), where \(P' = a^{-1}_\alpha Pa_\alpha \). Put

\[
(4.4) \quad a' = \text{Ad}(a^{-1}_\alpha) a = RZ' \oplus i_{\alpha_0}.
\]

Then the Lie algebra \(p' \) of \(P' \) is defined by the pair \((a', \Sigma(a')^+)\), where \(\Sigma(a')^+ = \{ \alpha \circ \text{Ad}(a_\alpha) \in \Sigma(a') | \alpha \in \Sigma(a)^+ \} \). Since \(H \) and \(P' \) are complex subgroups of \(G \), we have only to show the equality

\[
(4.5) \quad h + p' = h + p_Z'.
\]

We can write

\[
p_Z' = p' \oplus \bigoplus_{\beta \in \Sigma(a')^+, \beta(Z') = 0} g(a', -\beta).
\]

If \(\beta \in \Sigma(a')^+ \) satisfies \(\beta(Z') = 0 \), then it follows from (4.4) that \(\sigma \beta = -\beta \) and hence \(\sigma g(a', -\beta) = g(a', \beta) \). So we have \(p_{Z'} \subset p' + \sigma p' \subset h + p' \). (4.5) is clear by this inclusion. Thus we have proved (4.3).

Next assume (4.2). Since \(\text{Ad}(a^2_\alpha)Z = -Z \), we have \(P_{-Z} = a^2_\alpha P_Z a^{-2}_\alpha \). Hence

\[
xHa^{-1}_\alpha a^2_\alpha P_Z a^{-2}_\alpha \cap H'\alpha^2_\alpha P_Z a^{-2}_\alpha \neq \emptyset
\]

and therefore

\[
xHa_\alpha P_Z \cap H'a^2_\alpha P_Z \neq \emptyset.
\]

Since \(H'P_Z \) and \(H'a^2_\alpha P_Z = H'P_{-Z} a^2_\alpha \) are closed in \(G \) and since there is only one closed \(H'P_Z \) double coset in \(G \), we have \(H'P_Z = H'a^2_\alpha P_Z \). Hence

\[
xHa_\alpha P_Z \cap H'P_Z \neq \emptyset.
\]

By the same argument as for (4.1) \(\Rightarrow \) (4.3), we get

\[
x(Ha_\alpha p'B)^{cl} \cap H'B \neq \emptyset
\]

for an arbitrary \(p' \in P \). Thus we have proved (ii) for \(\tilde{S} = Ha^{-1}_\alpha pB \cup Ha_\alpha p'B \) or \(S = Ha^{-1}_\alpha pB \) for arbitrary \(p \) and \(p' \) in \(P \).

Remark 4.2. In the following proof of (iii), we must choose \(p \in P \) (resp. \(p' \in P \)) so that \(Ha^{-1}_\alpha pB \) (resp. \(Ha_\alpha p'B \)) is as small as possible. Of course we may also replace \(B \) with \(BP_B \) for some \(p \in P \). The following considerations on orbit structure are based on many examples computed in [M2], Section 4.

Now we will prove (iii). First consider the case where \(n \) is odd. Then in view of Proposition 3.1 and the choice of \(Z \) in the proof of Theorem 3.2, we can take a maximal abelian subalgebra \(t_\alpha \) of \(s \cap t \cap h(\subset 3\beta(t)) \) so that \([Z, t_\alpha] = \{0\} \). We may choose \(j \) so that it contains \(a \oplus i_{\alpha_0} \). We see that \(\text{Ad}(a^{-2}_\alpha) \) defines the reflection with respect to \(Z \) on \(j \cap \alpha_c \). Since \(\text{Ad}(a^{-2}_\alpha) \) acts trivially on \(\alpha_c \), it acts on \(j \) as the reflection \(w_Z \) with respect to \(Z \).

Let \(\Psi \) denote the set of simple roots in \(\Sigma(j)^+ \). For each subset \(\Theta \) of \(\Psi \) there corresponds a parabolic subgroup

\[
P_\Theta = BW_\Theta B
\]
of \(G \), where \(W_\Theta \) is the subgroup of \(W \) generated by \(\{ w_\beta \mid \beta \in \Theta \} \). We will show that

\[\Theta \neq \Psi \implies H a_\alpha^{-1} B \cap H' P_\Theta = \emptyset \]

because the right-hand side is equivalent to \(H a_\alpha^{-1} B \cap H P_\Theta = \emptyset \) (\textbf{[M2]}).

We can study \(H' B \) double cosets by using the Bruhat decomposition as in \textbf{[Sp]}. By the map

\[y \mapsto \tau(y)^{-1} y, \]

the double coset \(H' y B \) is mapped into \(\tau(B) \tau(y)^{-1} y B \). Since \(\Sigma(j)^+ \) is \(\tau \)-compatible, we can write

\[\tau(B) = w_c^{-1} B w_c, \]

where \(w_c \) is the longest element in the Weyl group \(W_c \) generated by the reflections with respect to the compact roots in \(\Sigma(j) \). Hence by the map

\[y \mapsto w_c \tau(y)^{-1} y, \]

\(H' y B \) is mapped into

\[w_c \tau(B) \tau(y)^{-1} y B = B w_c \tau(y)^{-1} y B. \]

By this map \(H a_\alpha^{-1} B \) is mapped into \(B w_c a_\alpha^{-2} B \). On the other hand, \(H' P_\Theta \) is mapped into

\[w_c \tau(P_\Theta) w_c^{-1} w_c P_\Theta = P_\Theta w_c P_\Theta. \]

Here we write \(w_c \tau(P_\Theta) w_c^{-1} = P_\Theta' \) with some \(\Theta' \subset \Psi \) since \(w_c \tau(P_\Theta) w_c^{-1} \) contains \(w_c \tau(B) w_c^{-1} = B \). Since \(w_c a_\alpha^{-2} \) normalizes \(j \), it is considered an element of \(W \). So we have only to prove that

\[w_c a_\alpha^{-2} \notin W_\Theta' W_\Theta. \]

Let \(Z_\Theta \) (resp. \(Z_{\Theta'} \)) be a non-zero element in \(j \) which is dominant with respect to \(\Sigma(j)^+ \) and \(W_\Theta \)-invariant (resp. \(W_{\Theta'} \)-invariant). Then we have

\[B(Z, Z_\Theta) > 0 \quad (\text{resp. } B(Z, Z_{\Theta'}) > 0) \]

with respect to the Killing form \(B(\ ,\ ,\) \) as follows. \(Z \) is identified by \(B(\ ,\ ,\) \) with a dominant root \(\alpha \) in \(\Sigma(j)^+ \) (modulo positive constant). It is known that \(\alpha = \sum_{\beta \in \Psi} m_\beta \beta \) with \(m_\beta > 0 \) for all \(\beta \in \Psi \). Since \(\beta(Z_\Theta) \geq 0 \) for all \(\beta \in \Psi \) and since \(\beta(Z_{\Theta'}) > 0 \) for some \(\beta \in \Psi \), it follows that

\[\alpha(Z_\Theta) = \sum_{\beta \in \Psi} m_\beta \beta(Z_\Theta) > 0. \]

Since \(Z \in \mathfrak{a} \), we have

\[w_c(Z) = Z. \]

Since \(Z_\Theta \) and \(Z_{\Theta'} \) are dominant for \(\Sigma(j)^+ \), we have

\[B(Z_{\Theta'}, \text{Ad}(w_c) Z_\Theta) \leq B(Z_{\Theta'}, \text{Ad}(w_1) Z_\Theta) \]

for any \(w_1 \in W_c \).
It follows from (4.7), (4.8) and (4.9) that
\[B(Z_{\theta'}, \text{Ad}(w_{c})\text{Ad}(a_{\alpha}^{-2})Z_{\theta}) = B(Z_{\theta'}, \text{Ad}(w_{c})Z_{\theta} - \frac{2B(Z, Z_{\theta})}{B(Z, Z)}Z_{\theta}) \]
\[= B(Z_{\theta'}, \text{Ad}(w_{c})Z_{\theta}) - \frac{2B(Z, Z_{\theta})B(Z, Z_{\theta'})}{B(Z, Z)} \]
\[< B(Z_{\theta'}, \text{Ad}(w_{1})Z_{\theta}) \]
\[= B(Z_{\theta'}, \text{Ad}(w_{\theta'}w_{1}w_{\theta})Z_{\theta}) \]
for all $w_{\theta} \in W_{\theta}$, $w_{1} \in W_{\theta}$ and $w_{\theta'} \in W_{\theta'}$. Thus we have (4.6).

We can also prove that
\[\Theta \neq \Psi \implies H' a_{\alpha} B \cap H' P_{\theta} = \emptyset \]
by the same argument. Thus we have proved (iii) when n is odd.

5. Proof of (iii) for even n

In this section we will prove (iii) of Theorem 1.3 when n is even. In this case there are no real roots in $\Sigma(j)$ and hence
\[\text{there is only one } K \cap H \text{-conjugacy class} \]
(5.1)
of σ-stable maximal abelian subspace of m

([M], Theorem 2, [Su], Theorem 6).

By the classification, there are four cases
\[H' (= G_{R}) \text{ is complex, AII, } \mathfrak{so}(1, q) \text{ (} q \text{ is odd) and EIV.} \]

5.1. Complex cases. Let G_{1} be a complex simple Lie group. Let K_{1} be a compact real form of G_{1} and let θ_{1} be the conjugation of G_{1} with respect to K_{1}. Then $g_{1} = \mathfrak{k}_{1} \oplus \mathfrak{m}_{1}$ is a Cartan decomposition of g_{1}, where $\mathfrak{m}_{1} = i\mathfrak{k}_{1}$.

Put $G = G_{1} \times G_{1}$, $H = \{(g, g) \mid g \in G_{1}\}$ and $K = K_{1} \times K_{1}$. Then
\[H' = \{(g, \theta_{1}(g)) \mid g \in G_{1}\}. \]

Let $\mathfrak{a} = \mathbb{R}Z \oplus i\mathfrak{k}_{1} \subset \mathfrak{m} \cap \mathfrak{q}$ be as in Section 4. Since $\mathfrak{m} \cap \mathfrak{q} = \{(X, -X) \mid X \in \mathfrak{m}_{1}\}$, we can write $\mathfrak{a} = \{(X, -X) \mid X \in \mathfrak{j}_{1}\}$ with some maximal abelian subspace \mathfrak{j}_{1} of \mathfrak{m}_{1}.

Write $Z = (Z_{1}, -Z_{1})$, $a_{\alpha} = (a, a^{-1}) = (\exp Y, \exp(-Y))$, $i\mathfrak{k}_{1} = \{(X, -X) \mid X \in \mathfrak{j}_{1}\}$ and
\[Z' = \text{Ad}(a_{\alpha}^{-1})Z = (\text{Ad}(a^{-1})Z_{1}, -\text{Ad}(a)Z_{1}) = (Z_{2}, Z_{2}) \in \mathfrak{m} \cap \mathfrak{h} \]
with $Z_{1} \in \mathfrak{j}_{1}$, $Y \in \mathfrak{k}_{1}$ and $Z_{2} \in \mathfrak{m}_{1}$. Then we have
\[\text{Ad}(a^{2})Z_{1} = -\text{Ad}(a)Z_{2} = -Z_{1} \quad \text{and} \quad \text{Ad}(a^{2})X = X \text{ for } X \in (\mathfrak{j}_{1})_{\alpha}. \]

Hence $\text{Ad}(a^{2}|_{\mathfrak{h}})$ is the reflection with respect to Z_{1}.

Let Σ_{1} denote the root system of the pair $(\mathfrak{g}_{1}, \mathfrak{j}_{1})$ and let Σ_{1}^{+} be a positive system of Σ_{1} such that Z_{1} is dominant for Σ_{1}^{+}. Let B_{1} be the Borel subgroup of G_{1} for the pair $(\mathfrak{j}_{1}, \Sigma_{1}^{+})$ and put $B = B_{1} \times \theta_{1}(B_{1})$. By the map
\[H'(y, z)B \mapsto B_{1}y^{-1}\theta_{1}(z)B_{1} \]

(5.2)
the decomposition $H'\setminus G/B$ is identified with the Bruhat decomposition $B_1\setminus G_1/B_1$ of G_1. Let Ψ_1 denote the set of simple roots in Σ^+_1. Then every parabolic subgroup P_Θ of G containing B is written as

$$P_\Theta = P_{\Theta_1} \times \theta_1(P_{\Theta_2})$$

with some subsets Θ_1 and Θ_2 of Ψ_1, where $P_{\Theta_1} = B_1W_{\Theta_1}B_1$ is the parabolic subgroup of G_1 corresponding to Θ_1.

By the identification (5.2) $H'a^{-1}_1 B$ and $H'P_{\Theta}$ are identified with $B_1 a\theta_1(a) B_1 = B_1 a^2 B_1 = B_1 W_{\Theta_1} W_{\Theta_2} B_1$, respectively. Since we assume that $H'\setminus G/B$ is non-trivial, Θ_1 and Θ_2 are not equal to Ψ_1. So we have only to show that

$$w_{Z_1} \notin W_{\Theta_1} W_{\Theta_2}.$$

But we can prove this by the same argument as in Section 4 since Z_1 corresponds to the maximal root in Σ^+_1. Thus we have proved (iii) when H' is a complex Lie group.

5.2. All-case. Since $n = 4$, the pair $(\mathfrak{s}, \mathfrak{s'})$ is isomorphic to $(\mathfrak{so}(2,4), \mathfrak{so}(1,4))$ by Proposition 3.1. By this identification, we can take a three-dimensional maximal abelian subspace

$$j_\mathfrak{m} = \mathbb{R}Z \oplus \mathbb{R}Z_1 \oplus \mathbb{R}Z_2$$

in $\mathfrak{m} \cap \mathfrak{s}_C$, where $Z = E_{23} + E_{32}$ (as in Section 3), $Z_1 = E_{14} + E_{41}$ and $Z_2 = i(E_{56} - E_{65})$. Take a maximal abelian subspace $j_{\mathfrak{s}}$ of $\mathfrak{m} \cap (\mathfrak{s}^+)_{C} = i\mathfrak{s}^+$ containing $i\mathfrak{a}$. Then $j = j_{\mathfrak{m}} \oplus j_{\mathfrak{s}}$ is a maximal abelian subspace of \mathfrak{m} containing $\mathfrak{a} = \mathbb{R}Z \oplus i\mathfrak{a}$.

By computation we have

$$\text{Ad}(a^{-2}_\mathfrak{m})Z = -Z, \quad \text{Ad}(a^{-2}_\mathfrak{m})Z_1 = -Z_1, \quad \text{Ad}(a^{-2}_\mathfrak{m})Z_2 = Z_2$$

and $\text{Ad}(a^{-2}_\mathfrak{m})X = X$ for all $X \in j_{\mathfrak{m}}$.

Let $\Sigma(\mathfrak{a})^+$ be a positive system of $\Sigma(\mathfrak{a})$ such that Z is dominant for $\Sigma(\mathfrak{a})^+$. Let $\Sigma(j)^+$ be a positive system of $\Sigma(j)$ which is compatible with $\Sigma(\mathfrak{a})^+$. Let $\Psi = \{\alpha_1, \ldots, \alpha_m\}$ (m is odd) denote the set of simple roots in $\Sigma(j)^+$, where

$$(\alpha_j, \alpha_k) = \begin{cases} 1 & \text{if } k = j, \\ -1/2 & \text{if } |k - j| = 1, \\ 0 & \text{if } |k - j| \geq 2 \end{cases}$$

as usual. Then $\{\alpha_k \mid k \text{ is odd}\}$ is the set of the compact simple roots in Ψ. Let $\alpha_{\max} = \alpha_1 + \cdots + \alpha_m$ denote the maximal root in $\Sigma(j)^+$. Then the four roots

$$\alpha_{\max}, \quad \alpha_{\max} - \alpha_1, \quad \alpha_{\max} - \alpha_m, \quad \alpha_{\max} - \alpha_1 - \alpha_m$$

are mapped onto the maximal root α in $\Sigma(\mathfrak{a})^+$ by the restriction of roots in $\Sigma(j)$ to \mathfrak{a}. By the Killing form we can identify Z and Z_1 with α and a vector in $\mathbb{R}\alpha_1 \oplus \mathbb{R}\alpha_m$, respectively.

We see that

$$P_Z = P_{\Psi - \{\alpha_2, \alpha_m - 1\}} = P_{\{\alpha_1\}} P_{\{\alpha_m\}} P_{\Theta_0},$$

where $\Theta_0 = \{\alpha_3, \alpha_4, \ldots, \alpha_{m-2}\}$. Since $Ha^{-1}_\alpha P_Z$ is closed in G by Theorem 3.2(i), it follows that

$$Ha^{-1}_\alpha P_{\Theta_0}$$

is closed in G for some $p \in P_{\{\alpha_1\}} P_{\{\alpha_m\}}$. It follows from (5.1) and Lemma 7.1 that $Ha^{-1}_\alpha p B = Ha^{-1}_\alpha w B$ for some $w \in W_{\{\alpha_1\}} W_{\{\alpha_m\}} = \{e, w_{\alpha_1}, w_{\alpha_m}, w_{\alpha_1} w_{\alpha_m}\}$.

(More precisely, we can see that $Ha^{-1}_\alpha B = Ha^{-1}_\alpha w_{\alpha_1} w_{\alpha_m} B$ and $Ha^{-1}_\alpha w_{\alpha_1} B = \ldots$)
$H_{a_{1}}^{-1}w_{\alpha_{m}}B$. But we do not need these equalities here.) Replace B by wBw^{-1}. Then

$$H_{a_{1}}^{-1}P_{\Theta_{0}}$$

is closed in G.

First suppose that Θ contains Θ_{0}. If $H_{a_{1}}^{-1}B \subset HP_{\Theta}$, then HP_{Θ} contains a closed set $H_{a_{1}}^{-1}P_{\Theta_{0}}$. Hence HP_{Θ} is closed in G. But HP_{Θ} is also open in G. So we have $HP_{\Theta} = G$ contradicting the assumption $HP_{\Theta} \neq G$. Thus we have

$$H_{a_{1}}^{-1}B \cap HP_{\Theta} = \emptyset.$$

So we have only to consider $\Theta = \Psi - \{\alpha_{k}\}$ with $k = 3, 4, \ldots, m - 2$. Take a Z_{Θ} as in Section 4. Since $w_{c}\tau(P_{\Theta})w_{c}^{-1} = P_{\Theta}$, we have only to prove (4.6) for $\Theta' = \Theta$. Since $\alpha_{1}(Z_{\Theta}) = \alpha_{m}(Z_{\Theta}) = 0$, we have

$$w_{c}Z_{\Theta} = Z_{\Theta}. \tag{5.3}$$

Since Z corresponds to a positive constant multiple of $2\alpha_{\text{max}} - \alpha_{1} - \alpha_{m}$ and since

$$(2\alpha_{\text{max}} - \alpha_{1} - \alpha_{m})(Z_{\Theta}) = 2\alpha_{\text{max}}(Z_{\Theta}) > 0$$

as in Section 4, we have

$$B(Z, Z_{\Theta}) > 0. \tag{5.4}$$

By (4.8), (4.9), (5.3) and (5.4) we have

$$B(Z_{\Theta}, \text{Ad}(w_{c}a_{\alpha_{1}}^{-2})Z_{\Theta}) = B(Z_{\Theta}, \text{Ad}(w_{c}w_{Z_{1}}w_{Z_{c}})Z_{\Theta})$$

$$= B(Z_{\Theta}, \text{Ad}(w_{c}w_{Z_{c}})Z_{\Theta})$$

$$= B(Z_{\Theta}, \text{Ad}(w_{c})(Z_{\Theta} - \frac{2B(Z, Z_{\Theta})}{B(Z, Z)Z}))$$

$$= B(Z_{\Theta}, \text{Ad}(w_{c})Z_{\Theta}) - \frac{2B(Z, Z_{\Theta})}{B(Z, Z)}$$

$$< B(Z_{\Theta}, \text{Ad}(w_{1})Z_{\Theta})$$

$$= B(Z_{\Theta}, \text{Ad}(w_{1}w_{\Theta}w_{\Theta}Z_{\Theta})Z_{\Theta})$$

for all $w_{\Theta}, w'_{\Theta} \in W_{\Theta}$ and $w_{1} \in W_{c}$. Thus we have proved

$$w_{c}a_{\alpha_{1}}^{-2} \notin W_{\Theta}W_{c}W_{\Theta}.$$

5.3. Cases of $\mathfrak{so}(1, q)$ (q is odd) and EIV. In these cases, we have $P_{Z} = P$. (Remark: We only use this condition. So the following argument is also valid when H' (= G_{R}) is real rank one.) Since $H_{a_{1}}^{-1}P = H_{a_{1}}^{-1}P_{Z}$ is closed in G by Theorem 3.2(i), there exists a $p \in P$ such that $H_{a_{1}}^{-1}pB$ is closed in G. If $H_{a_{1}}^{-1}pB \subset HP_{\Theta}$, then HP_{Θ} is closed in G. But HP_{Θ} is also open in G. Hence we have $HP_{\Theta} = G$, a contradiction to the assumption $HP_{\Theta} \neq G$. Thus we have proved

$$H_{a_{1}}^{-1}pB \cap HP_{\Theta} = \emptyset$$

and we have completed the proof of Theorem 1.3.
Lemma 6.1. Suppose that H' is of non-Hermitian type.

(i) If H' is not of CII-type or FII-type, then
$$ \dim \tilde{S}P_{\alpha_1} \cdots P_{\alpha_k} = \dim \tilde{S}P_{\alpha_1} \cdots P_{\alpha_{k-1}} + 1 $$
for $k = 1, \ldots, \ell$.

(ii) If H' is of CII-type, then we can take α_1 as a compact root and we have
$$ S_1' = S_{\alpha_1}P_{\alpha_2} \cdots P_{\alpha_\ell} $$
for the dense H-B double coset S_1 in $\tilde{S}P_{\alpha_1}$.

Proof. Let S_k denote the dense H-B double coset in $\tilde{S}P_{\alpha_1} \cdots P_{\alpha_k}$ for $k = 0, \ldots, \ell$. Write $S_k = Hx_kB$ with a representative x_k such that $j_k = \text{Ad}(x_k)$ is a σ-stable maximal abelian subspace in m. Let β_k denote the simple root in
$$ \Sigma(j_k)^+ = \{ \gamma \circ \text{Ad}(x_k)^{-1} \mid \gamma \in \Sigma(j)^+ \} $$
defined by $\beta_k = \alpha_k \circ \text{Ad}(x_k)^{-1}$. Since $\dim C S_k = \dim C S_{k-1} + 1$, it follows from Lemma 7.1 that
$$ \dim(j_k \cap q) = \dim(j_{k-1} \cap q) \text{ and } \beta_k \text{ is complex} $$
or that
$$ \dim(j_k \cap q) = \dim(j_{k-1} \cap q) + 1 \text{ and } \beta_k \text{ is real.} $$
In particular, we have
$$ \dim(j_0 \cap q) \leq \dim(j_1 \cap q) \leq \cdots \leq \dim(j_\ell \cap q). $$
Suppose that β_k is complex. Then it follows from Lemma 7.1(iv) that
$$ S_kP_{\alpha_k} = S_{k-1} \cup S_k. $$
Moreover we can take $x_k = x_{k-1}w_{\alpha_k}$ and hence $j_k = j_{k-1}$. By the duality (M2) we have $S_k'P_{\alpha_k} = S_{k-1}' \cup S_k'$ and $S_k' \subset S_{k-1}'$. Hence
$$ S_{k-1}' \cap (S_k'P_{\alpha_k}) = S_k' \cap P_{\alpha_k}. $$
(i) First suppose that n is even. By (5.1) we have
$$ \dim(j_0 \cap q) = \dim(j_1 \cap q) = \cdots = \dim(j_\ell \cap q). $$
Since β_k is complex for all $k = 1, \ldots, \ell$, it follows from (6.2) that
$$ (\tilde{S})^{\prime \prime} = S_0' \cap P_{\alpha_1} = \cdots = S_{\ell}' \cap P_{\alpha_1} = S_{\alpha_1}P_{\alpha_2} \cdots P_{\alpha_\ell}. $$
Next consider the case where n is odd. Since we assume H' is not of CII-type or FII-type, it follows that $n = 1$. Take a σ-stable maximal abelian subspace j of m as in Section 4 and Section 7.2. Then $j' = \text{Ad}(a_0^{-1})j$ is σ-stable. So we may assume that $x_0 = a_0^{-1}$. Since $j' \cap q = it_{\alpha_0}$, it follows from (6.1) that
$$ \dim(j_0 \cap q) = \cdots = \dim(j_{m-1} \cap q) = \dim(j_m \cap q) - 1 = \cdots = \dim(j_\ell \cap q) - 1 $$
for some m. So we may assume that $j_0 = \cdots = j_{m-1} = j'$ and that $j_m = \cdots = j_\ell = j$. We see that the root $\tilde{\alpha} \in \Sigma(j)$ corresponding to Z is the real root defining $j' = \cdots = j_{m-1} = j' = \cdots = j_\ell = j' = \cdots = j_0 = j'$. We have
$$ \dim(j_0 \cap q) = \cdots = \dim(j_{m-1} \cap q) = \dim(j_m \cap q) - 1 = \cdots = \dim(j_\ell \cap q) - 1 $$
for some m. So we may assume that $j_0 = \cdots = j_{m-1} = j'$ and that $j_m = \cdots = j_\ell = j$. We see that the root $\tilde{\alpha} \in \Sigma(j)$ corresponding to Z is the real root defining $j' = \cdots = j_{m-1} = j' = \cdots = j_\ell = j' = \cdots = j_0 = j'$. We have
Ad(α_0) from j (Theorem 6). On the other hand β_m is also a real root defining the \(K \cap H \)-conjugacy class of σ-stable maximal abelian subspace containing \(j' \). So \(\tilde{\alpha} \) and β_m are conjugate under some \(w \in W_{K \cap H}(j) \). Replacing \(x_m \) by \(wx_m \), we may assume that \(\beta_m = \tilde{\alpha} \). Consider the root \(\gamma = \alpha_m \circ \text{Ad}(x_m^{-1})^{-1} = \beta_m \circ \text{Ad}(x_m x_m^{-1}) \) in \(\Sigma(j_{m-1}) \). This root \(\gamma \) is the non-compact simple root in \(\Sigma(j_{m-1})' \) corresponding to \(Z' \).

Since \(H' \) is of non-Hermitian type, it follows from Lemma 7.2 that \(Hw \gamma x_m^{-1}B = Hx_m B \). Hence we have

\[
S_{m-1}P_\alpha = Hx_m B \uplus Hc_\gamma x_m^{-1}B = S_{m-1} \uplus S_m
\]

by Lemma 7.1(ii). So we have \(S_m'P_\alpha = S_m' \cup S_{m-1}' \) and \(S_m' \subset S_{m-1}' \). Hence

\[
(6.3) \quad S_{m-1}' = (S_m'P_\alpha)^{\sigma_1} = S_m'P_\alpha.
\]

By (6.2) and (6.3), we get

\[(\tilde{S})' = s_0 \tilde{S} = s_1 \tilde{S} \sigma_1 = \cdots = s_{\ell} \tilde{S} \sigma_{\ell} \sigma_1 = \tilde{S} \sigma_{\ell} \sigma_{\ell-1} \cdots \sigma_1.
\]

(ii) Take \(j, \Sigma(j)^+ \) and \(\Psi \) (the set of the simple roots in \(\Sigma(j)^+ \)) as in Section 4. Then \(\Sigma(j_0) = \text{Ad}(a_0^{-1}) \) is σ-stable and \(\dim(j_0 \cap q) = \dim(j \cap q) - 1 \). Write \(\Psi = \{e_1 - e_2, e_2 - e_3, \ldots, e_{r-1} - e_r, 2e_r\} \) as usual by using an orthonormal basis \(\{e_1, \ldots, e_r\} \) of \(j^* \). Then the compact simple roots are

\[e_1 - e_2, e_3 - e_4, \ldots, e_{2s-1} - e_{2s}, e_{2s+1} - e_{2s+2}, e_{2s+2} - e_{2s+3}, \ldots, e_{r-1} - e_r, 2e_r,
\]

where \(s (\leq r/2) \) is the real rank of \(H' = Sp(s, r - s) \). The dominant root \(\tilde{\alpha} \) corresponding to \(Z \) is

\[\tilde{\alpha} = e_1 + e_2.
\]

The root \(\beta = \tilde{\alpha} \circ \text{Ad}(a_0) \in \Sigma(j_0) \) is non-compact. Suppose that \((e_1 - e_2) \circ \text{Ad}(a_0) \) is compact. Then \(2e_1 \circ \text{Ad}(a_0) \) and \(2e_2 \circ \text{Ad}(a_0) \) are non-compact. Since these two roots are strongly orthogonal, we can construct a σ-stable maximal abelian subspace \(j' \) of \(m \) such that

\[\dim(j' \cap q) = \dim(j_0 \cap q) + 2 = \dim(j \cap q) + 1.
\]

But this contradicts that \(j \cap q = a \) is maximal abelian in \(m \cap q \). Thus we have proved that \((e_1 - e_2) \circ \text{Ad}(a_0) \) is a non-compact root of \(\Sigma(j_0) \).

Put \(\alpha_1 = e_1 - e_2 \). Then the dense \(H-B \) double coset \(S_1 \) in \(\tilde{S}P_\alpha \) is written as \(S_1 = Hx_1 B \), where \(x_1 = \text{Ad}(x_1) \) satisfies

\[\dim(j \cap q) = \dim(j_0 \cap q) + 1 = \dim(j \cap q).
\]

Take \(\alpha_2, \ldots, \alpha_\ell \) so that

\[\dim \tilde{S}P_\alpha \cdots P_{\alpha_k} = \dim \tilde{S}P_\alpha \cdots P_{\alpha_k} + 1
\]

for \(k = 2, \ldots, \ell \). Then we have

\[\dim(j_1 \cap q) = \dim(j_2 \cap q) = \cdots = \dim(j_\ell \cap q)
\]

by (6.1). Hence \(\beta_2, \ldots, \beta_\ell \) are complex roots and so we have

\[S_{m-1}' = S_m'P_\alpha = \cdots = S_{\ell} \sigma_1 P_\alpha = S_{\ell} \sigma_{\ell} P_\alpha \cdots P_\alpha
\]

by (6.2).
Proof of Theorem 1.7. We will show that \(\overline{S} \subset T_j = S'_j \) for every \(j \in J \). By [GM2], Lemma 2, there exists a simple root \(\beta \) such that \(S_j \beta \supseteq S_{op} \). Hence \(S_j \subseteq S_{op} \beta \) and therefore \(S_j \subseteq S'_{op} \beta \). In particular, \(\beta \) is not a compact root.

If \(H' \) is of FII-type, then \(\Psi(j) \) is \(F_4 \)-type and it consists of three compact roots and one complex root \(\beta \). Hence \(J \) consists of only one element \(j \) and \(S_{op} \beta = S_{op} \cup S_j \). So it is clear that
\[
\overline{S} \subset T_j
\]
because \(\overline{S} \subset T_j \) for some \(j \in J \) by [GM2], Theorem 2.

So we may assume that \(H' \) is not of FII-type. It is known that
\[
\overline{S} \subset S'_j \iff (\overline{S}')^c \supset S'_j
\]
([M3], Corollary, [MUV], Corollary 1.4). Suppose that \(\overline{S} \not\subseteq T_j = S'_j \). Then \((\overline{S}')^c \not\subseteq S'_j \). Hence
\[
\alpha_1, \ldots, \alpha_\ell \neq \beta
\]
by Lemma 6.1. (If \(H' \) is of CII-type, then \(\overline{S} \not\subseteq T_j \) implies \(S_1 \not\subseteq T_j \) because \(\overline{S} \subseteq S'_j \). Hence \(S_{1}^c \not\subseteq S'_j \) and therefore \(\alpha_2, \ldots, \alpha_\ell \neq \beta \) by Lemma 6.1(ii). Since \(\alpha_1 \) is compact, we have \(\alpha_1, \ldots, \alpha_\ell \neq \beta \).) Thus we have
\[
\overline{S} \subset S_{op} \beta \Theta
\]
with \(\Theta = \Psi - \{ \beta \} \). In Remark 1.2(ii) we see that \(HP_{\Theta} = G \) holds only when \(\Theta = \Psi - \{ \beta \} \) with some compact root \(\beta \). So we have \(HP_{\Theta} \neq G \) and it follows from Theorem 1.3(iii) that
\[
\overline{S} \cap S_{op} \beta \Theta = \emptyset,
\]
a contradiction. Thus we have proved \(\overline{S} \subset T_j \). \(\square \)

7. Appendix

In this appendix, we assume \(H' \) is a simple Lie group and \(G \) is a complexification of \(H' \). (So \(G, H \) and \(H' \) are \(G_\mathbb{C}, K_\mathbb{C} \) and \(G_{\mathbb{R}} \), respectively, in Section 1.) In Section 7.2 we will moreover assume that \(H' \) is of non-Hermitian type.

7.1. Lemma 5.1 in [V]. First we will review a lemma due to Vogan [V] which is used frequently in this paper. This lemma is generalized for arbitrary real symmetric pairs \((G, H)\) in [MB], Lemma 3. But we will restrict ourselves to complex symmetric pairs for simplicity.

The full flag manifold of \(G \) is identified with the set \(F \) of all the Borel subgroups in \(G \). Every \(H \)-orbit in \(F \) contains a Borel subgroup of the form
\[
B = B(j, \Sigma^+) = Z_G(j) \exp n
\]
with \(n = \bigoplus_{\alpha \in \Sigma^+} g(j, \alpha) \), where \(j \) is a \(\sigma \)-stable maximal abelian subspace of \(m \) and \(\Sigma^+ \) is a positive system of the root system \(\Sigma \) of the pair \((g, j)\) ([M1], Theorem 1, [R], Theorem 13). \((\Sigma_\mathbb{C} \text{ is a } \sigma \text{-stable Cartan subalgebra of } g.)\) By the symmetry of \(H \) and \(H' \) every \(H' \)-orbit in \(F \) also contains a Borel subgroup \(B \) of the form (7.1). In [M1] (Corollary of Theorem 3) we defined the natural correspondence between \(H \)-orbits \(S \) in \(F \) and \(H' \)-orbits \(S' \) in \(F \) so that \(S \) and \(S' \) contain the same Borel subgroups \(B \) of the form (7.1). (We remark here that the \(H' \)-orbit structure on the full flag manifold \(F \) was first explicitly studied in [A].)

Roots in \(\Sigma \) are usually classified as follows:

(i) If \(\sigma(\alpha) = \alpha \) and \(g(j, \alpha) \subset h \), then \(\alpha \) is called a “compact root”.

...
(ii) If $\sigma(\alpha) = \alpha$ and $g(j, \alpha) \subset q$, then α is called a “non-compact root”.

(iii) If $\sigma(\alpha) = -\alpha$, then α is called a “real root”.

(iv) If $\sigma(\alpha) \neq \pm \alpha$, then α is called a “complex root”.

For a simple root α of Σ^+, we can define a parabolic subgroup P_α by

$$P_\alpha = B \cup Bw_\alpha B.$$

Lemma 7.1 ([V], Lemma 5.1, cf. also [M3], Lemma 3). HP_α is decomposed into $H-B$ double cosets as follows:

(i) If α is compact, then $HP_\alpha = HB$.

(ii) If α is non-compact, then $HP_\alpha = HB \cup Hw_\alpha B \cup Hc_\alpha B$ and $\dim_C HB = \dim_C Hw_\alpha B = \dim_C Hc_\alpha B - 1$. Here $c_\alpha = \exp(X + \theta X)$ with some $X \in g(j, \alpha)$ such that $c_\alpha^2 = w_\alpha$. (Sometimes HB and $Hw_\alpha B$ coincide.)

(iii) If α is real, then $HP_\alpha = HB \cup H\alpha_{\text{B}} \cup Hc_{\alpha_{\text{B}}}^{-1} B$ and $\dim_C H\alpha_{\text{B}} B = \dim_C Hc_{\alpha_{\text{B}}}^{-1} B = \dim_C HB - 1$. Here $c_\alpha = \exp(X + \theta X)$ with some $X \in g(j, \alpha) \cap q'$ such that $\dim_H(H\alpha_{\text{B}} B = \dim_C Hc_{\alpha_{\text{B}}}^{-1} B$ coincide.)

(iv) If α is complex, then $HP_\alpha = HB \cup Hw_\alpha B$. Moreover we have

$$\dim_C Hw_\alpha B = \begin{cases} \dim_C HB + 1 & \text{if } \sigma\alpha \in \Sigma^+, \\ \dim_C HB - 1 & \text{if } \sigma\alpha \notin \Sigma^+. \end{cases}$$

7.2. A lemma for non-Hermitian cases. Suppose that $n = \dim_C g(t, \alpha) = 1$ for a longest root α in $\Sigma(t)$. Let t be a maximal abelian subalgebra of t containing t. Then the restricted root α is the restriction of the root α for t such that α vanishes on $t = t \cap \mathfrak{h}$.

As in Section 4 define a maximal abelian subspace $a = \mathbb{R}Z \oplus it_\alpha$ of $m \cap q$. Then $j = a \oplus t_\alpha$ is a maximal abelian subspace of m. Put $j' = \text{Ad}(a_{\text{B}}^{-1})j = \mathbb{R}Z' \oplus it_\alpha \oplus t_\alpha$, where $Z' = \text{Ad}(a_{\text{B}}^{-1})Z$ as in Section 3. Then j' is a σ-stable maximal abelian subspace of m such that $\dim(j' \cap q) = \dim(j \cap q) - 1$.

Lemma 7.2. Suppose that H' is of non-Hermitian type. Then there exists a $t \in T \cap H$ such that $e^{\alpha}(t) = -1$ and that $\text{Ad}(t)|_{H'}$ is the reflection with respect to Z'.

Proof. Clearly we may assume that G is simply connected. So the compact real form K of G is also simply connected. Then it is known that K^σ is connected. So we have

$$K^\sigma = K \cap H.$$

Note that $\Sigma(t)$ is identified with the restricted root system of the compact symmetric pair $(K, K \cap H)$. Let Z_β be the element of t defined by

$$Z_\beta = \frac{4\pi i \beta}{(\beta, \beta)}.$$

(This means $\gamma(Z_\beta) = 4\pi i(\gamma, \beta)/(\beta, \beta)$ for all $\gamma \in \Sigma(t)$.) Then it is known that the lattice

$$\{Y \in t \mid \exp Y = e\}$$

is generated by $\{Z_\beta \mid \beta \in \Sigma(t)\}$ (cf. [V], Appendix).

Note that $\Sigma(t)$ is also identified with the restricted root system of H'. It is known that H' is of Hermitian type if and only if the following two conditions are satisfied:

(i) $\Sigma(t)$ is C-type or BC-type.

(ii) $\dim_C g(t, \alpha) = 1$ for the longest roots α in $\Sigma(t)$.

Since we assume H' is of non-Hermitian type and since we assume (ii), the restricted root system $\Sigma(t)$ does not satisfy (i). Hence there exists a $\beta \in \Sigma(t)$ such that
\begin{equation}
\frac{(\alpha, \beta)}{(\beta, \beta)} = \frac{1}{2}.
\end{equation}

Consider the element $t = \exp(1/2)Z_\beta$ of T. Since $t\sigma(t)^{-1} = t^2 = \exp Z_\beta = e$, we have $t \in K' = K \cap H$. By (7.2) we have
\begin{equation*}
\alpha \left(\frac{1}{2} Z_\beta \right) = \frac{2\pi i (\alpha, \beta)}{(\beta, \beta)} = \pi i
\end{equation*}
and therefore $e^{\alpha}(t) = e^{\pi i} = -1$.

Since $Z' \in \mathfrak{m}_C(t, \alpha) \oplus \mathfrak{m}_C(t, -\alpha)$, we have $\text{Ad}(t)Z' = -Z'$. (Here we consider the complexification of the complex Lie algebra \mathfrak{g}.) On the other hand $\text{Ad}(t)$ acts trivially on $i\mathfrak{t}_\alpha \oplus \mathfrak{b}_t$. Hence $\text{Ad}(t)$ acts on \mathfrak{g} as the reflection with respect to Z'. □

Acknowledgement

The author expresses his thanks to S. Gindikin for his advice and encouragement.

Added in proof

Recently Conjecture 1.1 was solved in [M9] for Hermitian cases. So the conjecture is now completely solved affirmatively (cf. Remark 1.10).

References

EQUIVALENCE OF DOMAINS 2245

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: matsuki@math.kyoto-u.ac.jp