ALMOST COMPLEX MANIFOLDS
AND CARTAN’S UNIQUENESS THEOREM

KANG-HYURK LEE

ABSTRACT. We present a generalization of Cartan’s uniqueness theorem to the almost complex manifolds.

1. INTRODUCTION

The primary goal of this article is to present a generalization to the almost complex manifolds of the following celebrated theorem of H. Cartan, which is usually called Cartan’s uniqueness theorem (see p. 66, [13]).

Theorem 1.1 (H. Cartan). Let Ω be a bounded domain in \mathbb{C}^n. If a holomorphic mapping $f : \Omega \to \Omega$ satisfies that $f(p) = p$ and $df_p = \text{Id}$ for some $p \in \Omega$, then f is the identity mapping.

In order to state the main theorem of this article, we shall introduce the necessary terminology and concepts.

A pair (M, J) is called an almost complex manifold if M is a C^∞-smooth real manifold and J is a field of endomorphisms of the tangent bundle TM with $J^2 = -\text{Id}$, i.e. for each $p \in M$, $J_p : T_p M \to T_p M$ is an endomorphism with $J_p^2 = -\text{Id}$. We call J an almost complex structure on M. Throughout this paper, by a smooth almost complex manifold we mean a manifold with a C^∞-smooth almost complex structure.

Given two almost complex manifolds (M, J) and (M', J'), a C^1 mapping f from M to M' is said to be (J, J')-holomorphic (or simply pseudo-holomorphic, so there is no danger of confusion) if its differential $df : TM \to TM'$ satisfies

$$df \circ J = J' \circ df \quad (1.1)$$

on TM. If (M, J) is a Riemann surface, f is called a pseudo-holomorphic curve. In the case (M, J) is the unit disc D in \mathbb{C} with the standard complex structure J_{st}, we call f a pseudo-holomorphic disc. We denote by $\mathcal{O}_{(J,J')}(M,M')$ the space of (J, J')-holomorphic mappings from M to M'.

By the existence theorem of pseudo-holomorphic discs (Nijenhuis and Woolf [15]), we can define the Kobayashi pseudo-distance ([8]) and the Kobayashi-Royden pseudo-metric ([16]) for the almost complex manifolds.

Let (M, J) be an almost complex manifold. Given two points p and q in M, a finite sequence of pseudo-holomorphic discs $c = \{\phi_j\}_{j=1,\ldots,k} \subset \mathcal{O}_{(J_{st}, J)}(D, M)$
is called a chain of pseudo-holomorphic discs from \(p \) to \(q \) if there are points \(p = p_0, p_1, \ldots, p_k = q \) in \(M \) and \(a_1, a_2, \ldots, a_k \) in \(D \) such that
\[
\phi_j(0) = p_{j-1} \quad \text{and} \quad \phi_j(a_j) = p_j
\]
for \(j = 1, \ldots, k \). For this chain, we define its length \(\ell(c) \) by
\[
\ell(c) = \log \frac{1 + |a_1|}{1 - |a_1|} + \ldots + \log \frac{1 + |a_k|}{1 - |a_k|}.
\]
Note that \(\log \frac{1 + |z|}{1 - |z|} \) is the Poincaré distance from 0 to \(z \) in \(D \). The Kobayashi pseudo-distance \(d_{(M, J)} \) on \((M, J)\) is then defined by
\[
d_{(M, J)}(p, q) = \inf \ell(c),
\]
where the infimum is taken over all chains of pseudo-holomorphic discs from \(p \) to \(q \).

The Kobayashi-Royden pseudo-metric \(F_{(M, J)} \) is the infinitesimal version of the Kobayashi pseudo-distance defined by
\[
F_{(M, J)}(p, v) = \inf \left\{ \frac{1}{|a|} : \phi \in \mathcal{O}_{(J, J)}(D, M) \text{ with } \phi(0) = p, \ d\phi(e) = av \right\},
\]
where \(e \) is the unit vector in \(T_0 D \) and \(p \in M \) and \(v \in T_p M \). We exploit from [10] and [11] the following properties that are exactly the same as in the integrable case ([8] and [10]):

(a) \(F_{(M, J)} \) is upper semi-continuous and
\[
d_{(M, J)}(p, q) = \inf \int_0^1 F_{(M, J)}(\gamma(t), \gamma'(t))dt,
\]
where the infimum is taken over all piecewise smooth paths \(\gamma : [0, 1] \rightarrow M \) with \(\gamma(0) = p \) and \(\gamma(1) = q \).

(b) Let \(f : (M, J) \rightarrow (M', J') \) be a pseudo-holomorphic mapping. For any points \(p \) and \(q \) in \(M \) and tangent vector \(v \in T_p M \), we have
\[
d_{(M', J')} (f(p), f(q)) \leq d_{(M, J)}(p, q)
\]
and
\[
F_{(M', J')} (f(p), df_p(v)) \leq F_{(M, J)} (p, v).
\]

(c) The Kobayashi pseudo-distance \(d_{(M, J)} \) is finite and continuous on \(M \times M \).

(d) If \(d_{(M, J)} \) is a distance, it induces the standard topology on \(M \).

We say that \((M, J)\) is (Kobayashi) hyperbolic if \(d_{(M, J)} \) is a proper distance. Note that for any neighborhood \(U \) of \(p \in M \), there is a constant \(r > 0 \) such that the Kobayashi ball \(B_{(M, J)}(p, r) = \{ q \in M : d_{(M, J)}(p, q) < r \} \) is contained in \(U \) when \((M, J)\) is hyperbolic.

Now we state our main theorem.

Theorem 1.2. Let \((M, J)\) be a \(C^\infty \)-smooth almost complex manifold. Moreover, \(M \) is connected and Kobayashi hyperbolic. Suppose that there is a pseudo-holomorphic mapping \(f : M \rightarrow M \) with \(f(p) = p \) and \(df_p = \text{Id} \). Then \(f \) is the identity mapping.

The proof of this theorem appears in Section 5. Sections 2, 3 and 4 contain a regularity theorem and derivative estimates for pseudo-holomorphic mappings which will be used in the proof of Theorem 1.2.
2. Regularity of pseudo-holomorphic mappings

We now study the smoothness of pseudo-holomorphic mappings. Since the problem is local, we assume that our manifold is a domain in a Euclidean space. Let \((\Omega, J) \subset \mathbb{R}^{2n}\) and \((\Omega', J') \subset \mathbb{R}^{2m}\) be domains with almost complex structures \(J \in C^\infty(\Omega)\) and \(J' \in C^\infty(\Omega')\). (If the underlying space of an almost complex manifold is a domain in a Euclidean space, we will call it the almost complex domain.) Assume that \(\Omega\) is bounded and has smooth boundary. Regard \(J\) and \(J'\) as matrix-valued functions on \(\Omega\) and \(\Omega'\), respectively. In this section \(j, k, \ldots = 1, 2, \ldots, 2n\) and \(\alpha, \beta, \gamma, \ldots = 1, 2, \ldots, 2m\).

Let \(f : \Omega \to \Omega'\) be a pseudo-holomorphic mapping of class \(C^1(\Omega)\). Then \(J'_f = J' \circ f\) is \(2m \times 2m\) matrix-valued function defined on \(\Omega\) of class \(C^1(\Omega)\). We will fix \(f\) and simply denote \(J'_f\) by \(J'\) for the rest of this section. Let \(J = (a^k_j)\) and \(J' = (b^\beta_j)\), where \(a^k_j \in C^\infty(\Omega)\) and \(b^\beta_j \in C^1(\Omega)\).

Denote by \(L^2(\Omega, \mathbb{R}^{2m})\) (resp. \(L^2(\Omega, M_{2m \times 2n}(\mathbb{R}))\)) the space of \(\mathbb{R}^{2m}\)-valued (resp. \(2m \times 2n\) matrix-valued) square integrable functions. For \(g \in L^2(\Omega, \mathbb{R}^{2m})\) and \(\varphi \in L^2(\Omega, M_{2m \times 2n}(\mathbb{R}))\), we write \(g = (g_\alpha)\) and \(\varphi = (\varphi^\beta_j)\). Define the inner products of \(L^2(\Omega, \mathbb{R}^{2m})\) and \(L^2(\Omega, M_{2m \times 2n}(\mathbb{R}))\) by

\[
(g, h) = \int_\Omega (\sum_\alpha g_\alpha h_\alpha),
\]

\[
(\varphi, \psi) = \int_\Omega \text{trace}(\varphi^a \psi + J(\varphi^a)J(\psi))
\]

\[
= \int_\Omega (\sum_\alpha \varphi^\alpha_j \psi^\alpha_j + \sum_{\alpha, \beta, \gamma, j} \varphi^\alpha_j b^\beta_j \psi^\beta_j),
\]

where \(g, h \in L^2(\Omega, \mathbb{R}^{2m})\) and \(\varphi, \psi \in L^2(\Omega, M_{2m \times 2n}(\mathbb{R}))\).

For fixed \(f\), we can define the densely defined linear differential operator \(\overline{\partial} : L^2(\Omega, \mathbb{R}^{2m}) \to L^2(\Omega, M_{2m \times 2n}(\mathbb{R}))\) by

\[
\overline{\partial}g = dg + J' dg J,
\]

where \(dg\) denotes the Jacobian matrix of \(g\). Since \(f\) satisfies equation (1.1), it follows that \(\overline{\partial} f = 0\). The \((\alpha, j)\)-th entry of \(\overline{\partial}g\) can be expressed by

\[
(\overline{\partial}g)^a_j = \frac{\partial g_\alpha}{\partial x_j} + \sum_{\beta, k} b^\alpha_j a^\beta_k \frac{\partial g^\beta_k}{\partial x_j}.
\]

We consider the following linear differential operator \(\partial : L^2(\Omega, M_{2m \times 2n}(\mathbb{R})) \to L^2(\Omega, \mathbb{R}^{2m})\) by

\[
(\partial \varphi)_\alpha = -\sum_j \frac{\partial \varphi^j_\alpha}{\partial x_j} + \sum_{\beta, j, k} b^j_\alpha a^\beta_k \frac{\partial \varphi^\beta_k}{\partial x_j}.
\]

In fact, the principal part of the formal adjoint operator of \(\overline{\partial}\) is of the form \((I + J'J')\partial\). Replacing \(\varphi\) by \(\overline{\partial}g\), we have

\[
(\partial \overline{\partial}g)_\alpha = -\sum_j \frac{\partial}{\partial x_j} (\overline{\partial}g)^a_j + \sum_{\beta, j, k} b^j_\alpha a^\beta_k \frac{\partial}{\partial x_j} (\overline{\partial}g)^\beta_j.
\]
Applying equation (2.1), we have that
\[
(\partial \overline{\partial} g)_\alpha = - \sum_j \frac{\partial^2 g_\alpha}{\partial x_j \partial x_j} - \sum_{\beta,j,k} b_\beta^j a^k_j \left(\frac{\partial^2 g_\beta}{\partial x_j \partial x_k} - \frac{\partial^2 g_\beta}{\partial x_k \partial x_j} \right) + \sum_{\beta,\gamma,j,k,l} b_\beta^\gamma a^k_\gamma b_j^{k,l} \frac{\partial^2 g_\gamma}{\partial x_k \partial x_l} + (Cg)_\alpha,
\]
where \((Cg)_\alpha\) is part of \((\partial \overline{\partial} g)_\alpha\) of lower order given by
\[
(Cg)_\alpha = - \sum_j \frac{\partial g_\beta}{\partial x_k} \frac{\partial}{\partial x_j} (b_\beta^j a^k_j) + \sum_{\beta,\gamma,j,k,l} b_\beta^\gamma a^k_\gamma \frac{\partial g_\gamma}{\partial x_k} \frac{\partial}{\partial x_j} (b_\gamma^j a^k_j) .
\]

Remark 2.1. Since \(a^j_\beta, b^j_\beta\) and its first derivatives are continuous on \(\Omega\), it follows that \((Cg)_\alpha \in L^2(\Omega)\) if \(g \in W^{1,2}(\Omega, \mathbb{R}^{2m}) = \bigoplus_{m=1}^2 W^{1,2}(\Omega)\). In particular, \((Cf)_\alpha \in L^p(\Omega)\) for any \(p \geq 1\).

Let \(p > 2n\). For any positive integer \(k\), we have \(kp > 2n\); hence by Theorem 5.23 in [1], \(W^{k,p}(\Omega)\) is a Banach algebra, i.e. \(uv \in W^{k,p}(\Omega)\) for any \(u\) and \(v\) in \(W^{k,p}(\Omega)\). Additionally, using the chain rule, \(b_\beta^j \in W^{k,p}(\Omega)\) whenever \(f_\alpha \in W^{k,p}(\Omega)\) for each \(\alpha\). Moreover, \((Cf)_\alpha \in W^{k-1,p}(\Omega)\).

For convenience, we let \(A^k_l = \sum_j a^k_j a^l_j \in C^\infty(\Omega)\). In fact, \(A^k_l\) is the \((k, l)\)-th entry of the matrix \(JJ^l\). Since \(\sum_{\beta} b_\beta^\gamma a^k_\gamma b_j^{k,l} = -\delta_{\alpha,\gamma}\), it follows that
\[
(\partial \overline{\partial} g)_\alpha = - \sum_j \frac{\partial g_\alpha}{\partial x_j} (\overline{\partial g})^\alpha_j + \sum_{\beta,j,k} b_\beta^j a^k_j \frac{\partial}{\partial x_k} (\overline{g})^\beta_j
\]
\[
= - \sum_j \frac{\partial^2 g_\alpha}{\partial x_j \partial x_j} - \sum_{k,l} A^k_l \frac{\partial^2 g_\alpha}{\partial x_k \partial x_l} + (Cg)_\alpha
\]
when each \(g_\alpha\) is of class \(C^\infty\). For any \(h \in C^1_0(\Omega)\), we obtain
\[
\int_{\Omega} (\partial \overline{\partial} g)_\alpha h = \sum_j \int_{\Omega} (\overline{\partial g})^\alpha_j \frac{\partial h}{\partial x_j} - \sum_{\beta,j,k} \int_{\Omega} (\overline{g})^\beta_j \frac{\partial}{\partial x_k} (b_\beta^j a^k_j h)
\]
\[
= \sum_j \int_{\Omega} \frac{\partial g_\alpha}{\partial x_j} \frac{\partial h}{\partial x_j} + \sum_{k,l} \int_{\Omega} \frac{\partial g_\alpha}{\partial x_l} \frac{\partial}{\partial x_k} (A^k_l h)
\]
\[
+ \int_{\Omega} (Cg)_\alpha h .
\]

Since \(C^\infty(\Omega)\) is dense in \(W^{1,2}(\Omega)\), we take a sequence \(f'\) in \(C^\infty(\Omega, \mathbb{R}^{2m})\) which converges to \(f\) in \(W^{1,2}(\Omega, \mathbb{R}^{2m})\). Then \((\partial \overline{\partial} f')_\alpha\), \((Cf')_\alpha\) and all the remaining first derivatives of \(f'\) converge to those of \(f\) in \(L^2(\Omega)\). Since \((\partial \overline{\partial} f')_\alpha = 0\), the sequence of
equations [2.2] for f'' converges to

\[(2.3) \quad - \sum_j \int_{\Omega} \partial f_{\alpha} \partial h \partial x_j - \sum_{k,l} \int_{\Omega} \partial f_{\alpha} \partial \partial x_l \partial x_k (A^k_l h) = \int_{\Omega} (Cf)_\alpha h\]

for any $h \in C^1_0(\Omega)$.

Take the linear partial differential operator $H = \sum_j \frac{\partial^2}{\partial x_j \partial x_j} + \sum_{k,l} A^k_l \frac{\partial^2}{\partial x_k \partial x_l}$. The symbol of H is $\sum_j \zeta_j^2 + \sum_{k,l} \zeta_k A^k_l \zeta_l = |\zeta|^2 + |J\zeta|^2$. So H is strictly elliptic on Ω with smooth coefficients. Equation (2.3) means that

\[
Hf = (Cf)_\alpha
\]

in the weak sense.

By our assumption, it follows that $(Cf)_\alpha \in L^2(\Omega)$ for each α. By the elliptic regularity theorem (Theorem 8.8 in [5]), we have $f_\alpha \in W^{2,2}_{loc}(\Omega)$ for each α.

Let $p > 2n$. Since $(Cf)_\alpha \in L^p(\Omega)$, by the uniqueness of solutions of the Dirichlet problem for the elliptic equation (Corollary 9.18 in [5]), it follows that $f_\alpha \in W^{2,p}_{loc}(\Omega) \cap C^0(\Omega)$ for each α. From Remark 2.1 we have $(Cf)_\alpha \in W^{2,p}_{loc}(\Omega)$; hence Theorem 9.19 in [5] implies that $f_\alpha \in W^{k,p}_{loc}(\Omega)$ for each α. Simultaneously, $(Cf)_\alpha \in W^{2,p}_{loc}(\Omega)$. Repeating our argument, we show that $f_\alpha \in W^{k,p}_{loc}(\Omega)$ for each positive integer k. By the Sobolev imbedding theorem, we have

Proposition 2.2. Let (M^{2n}, J) and (M^{2m}, J') be C^∞-smooth almost complex manifolds. Any C^1 pseudo-holomorphic mapping from M to M' is of class C^∞.

For the regularity of pseudo-holomorphic curves ($n = 1$), see Theorem 3.2.2 in [12] and Theorem 2.2.1 in [17].

3. First Order Estimate of Pseudo-Holomorphic Mappings

In this section, we derive the Cauchy estimate for pseudo-holomorphic mappings. For the first order estimate, it suffices to treat the case of pseudo-holomorphic discs.

Proposition 3.1 (Sikorav [17]). Fix $r, \eta \in (0, 1)$. Let W be a bounded domain in \mathbb{C}^n. Then there exist positive constants ε and C with the following property:

If $\phi : D \to W$ is a differentiable mapping such that

\[
\frac{\partial \phi}{\partial \overline{z}} + q(\phi) \frac{\partial \phi}{\partial z} = 0,
\]

where $q : W \to \text{End}_\mathbb{R}(\mathbb{C}^n)$ is of class C^r and $\|q\|_{C^r} \leq \varepsilon$, then ϕ is of class C^{1+r} on $D(1 - \eta)$. Moreover,

\[
\|\phi\|_{C^{1+r}(D(1-\eta))} \leq C\|\phi\|_{L^\infty}.
\]

The C^0 and C^k norms for a C^k mapping $f : U \subset \mathbb{R}^n \to \mathbb{R}^m$ is usually defined by $\|f\|_{C^0(U)} = \sum_{j=1}^m \sup_{x \in U} |f_j(x)|$ and $\|f\|_{C^k(U)} = \sum_{j=1}^m \sum_{|\alpha| \leq k} \|D^\alpha f_j\|_{C^0(U)}$, where $|\cdot|$ is a standard Euclidean norm. For $0 < r < 1$, the C^{k+r} (Holder) norm is defined by

\[
\|f\|_{C^{k+r}(U)} = \|f\|_{C^k(U)} + \sum_{j=1}^m \sup_{\alpha=|\alpha|} \sup_{x \neq y \in U} \frac{|D^\alpha f_j(x) - D^\alpha f_j(y)|}{|x - y|^r}.
\]
Note that for a C^1 mapping $f : U \subset \mathbb{R}^n \to \mathbb{R}^m$, $\|f\|_{C^1(U)}$ is equivalent to
\[
\|f\|_{C^0(U)} + \sup_{v \in \mathbb{R}^m} |df(v)|.
\]

Now we present:

Theorem 3.2. Let $(\Omega, J) \subset \mathbb{R}^{2m}$ and $(\Omega', J') \subset \mathbb{R}^{2m}$ be almost complex domains. For each point $p \in \Omega'$, there is a bounded neighborhood U of p in Ω' such that \{\|f\|_{C^1(K)} : f \in \mathcal{O}(J,J')(\Omega,U)\} is uniformly bounded for any compact subset K of Ω.

Proof. First, let us study the pseudo-holomorphic discs in Ω'. Applying a linear change of coordinates and a translation of \mathbb{R}^{2m}, we may assume that $p = 0$ and J' coincides with the canonical complex structure at 0, i.e. $J'_0 = J_{st}$. Take a neighborhood V of 0 such that $J' + J_{st}$ is invertible on V.

Suppose that $\phi : D \to V \subset \Omega'$ is a pseudo-holomorphic disc. Then the following equation holds:
\[
\frac{\partial \phi}{\partial x} = J'_a \frac{\partial \phi}{\partial y}.
\]

Since $\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial z} + \frac{\partial \phi}{\partial \bar{z}}$ and $\frac{\partial \phi}{\partial y} = J_{st} \left(\frac{\partial \phi}{\partial z} - \frac{\partial \phi}{\partial \bar{z}} \right)$, we have
\[
(J'_a + J_{st}) \frac{\partial \phi}{\partial \bar{z}} = -(J'_a - J_{st}) \frac{\partial \phi}{\partial z}.
\]

Defining the mapping $q : V \to \text{End}_\mathbb{R}(\mathbb{C}^m)$ by $q(a) = (J'_a + J_{st})^{-1} (J'_a - J_{st})$, we see that (3.1) can be written as
\[
\frac{\partial \phi}{\partial \bar{z}} + q(\phi) \frac{\partial \phi}{\partial z} = 0.
\]

Since V is relatively compact in Ω', q has the same (Hölder) regularity as that of J' on V.

Define the renormalization q_β of q by $q_\beta : \beta^{-1}V = \{\beta^{-1}a : a \in V\} \to \text{End}_\mathbb{R}(\mathbb{C}^m)$ and $q_\beta(a) = q(\beta a)$ for an arbitrary real number $\beta > 0$. Take a sufficiently small β such that $B(0,1) \subset \beta^{-1}V$, equivalently $B(0,\beta) \subset V$. Then for fixed $0 < r < 1$, we have
\[
\|q_\beta\|_{C^r(B(0,1))} = \|q\|_{C^r(B(0,1))} + \sup_{x \neq y \in B(0,1)} \frac{|q_\beta(x) - q_\beta(y)|}{|x - y|^r} = \|q\|_{C^r(B(0,\beta))} + \sup_{x \neq y \in B(0,1)} \frac{|q(x) - q(y)|}{|\beta x - \beta y|^r} \beta^r \leq \|q\|_{C^r(B(0,\beta))} + \sup_{x,y \in B(0,1)} \frac{|q(x) - q(y)|}{|x - y|^r} \beta^r.
\]

Since $q(0) = 0$, it follows that $\|q\|_{C^r(B(0,\beta))} \to 0$ as $\beta \to 0$. For a sufficiently small β, we have that $\|q_\beta\|_{C^r(B(0,1))} < \varepsilon$, where ε is in Proposition 3.1 for the case $W = B(0,1)$. Now a new mapping $\phi_\beta = \beta^{-1}\phi$ satisfies
\[
\frac{\partial \phi_\beta}{\partial \bar{z}} + q_\beta(\phi_\beta) \frac{\partial \phi_\beta}{\partial z} = 0.
\]
Let $U = B(0, \beta)$. By Proposition 3.1 we can deduce that
\[
\|\phi\|_{C^1(D(1-\eta))} \leq C\|\phi\|_{C^{1+r}(D(1-\eta))} \\
\leq C\beta\|\phi\|_{L^\infty} \\
\leq C\|\phi\|_{L^\infty}
\]
for any $\phi \in \mathcal{O}(J_{\epsilon,J_r})(D,U)$.

By 5.4a in [15], there is a constant $R > 0$ such that for any vector $v \in T\Omega$ based on K with $|v| \leq R$, there is a pseudo-holomorphic disc $\phi : D \to \Omega$ such that $d\phi(e) = v$, where e is an unit vector in T_0D. For any $f \in \mathcal{O}(J_{\epsilon,J_r})(\Omega,U)$, $f \circ \phi : D \to U$ is pseudo-holomorphic; hence it follows that $|df(v)| = |d(f \circ \phi)(e)| \leq \|d(f \circ \phi)\|_0 \leq \|f \circ \phi\|_{C^1(D(1-\eta))} \leq C\|f \circ \phi\|_{L^\infty} \leq C\|f\|_{C^0}$. Therefore we have
\[
\|f\|_{C^1(K)} \sim \|f\|_{C^0(K)} + \sup_{x \in K} \sup_{|v| \leq R} \frac{1}{R} |df_x(v)| \\
\leq \|f\|_{C^0(\Omega)} + \frac{C}{R}\|f\|_{C^0(\Omega)} \\
\leq (1 + \frac{C}{R})\|f\|_{C^0(\Omega)} .
\]
This proves the theorem. \qed

4. Pseudo-holomorphic jet bundles

In order to prove Theorem 1.2 we need some information about the ∞-jet of a certain family of pseudo-holomorphic mappings at a given point. These can be obtained by jet bundles.

Gauduchon ([4]) has shown that there is a natural almost complex structure in a pseudo-holomorphic 1-jet bundle such that the lifting of the pseudo-holomorphic mapping is also pseudo-holomorphic. In the first two subsections, we follow Gauduchon’s work (see chapter 4 in [2] and [3]).

4.1. Horizontal distribution. Let $\pi : E \to M$ be a vector bundle with a linear connection ∇. For any point $u \in E_x = \pi^{-1}(x)$, the vertical tangent space T^v_uE at u is a subspace of T_uE whose elements are tangent to E_x. Let $T^vE = \bigcup_{u \in E} T^v_uE$.

Fix any section $\xi \in \Gamma(E)$ with $\xi(x) = u$. For each vector $X \in T_xM$, we define a lifting \tilde{X}_u in T_uE by
\[
\tilde{X}_u = d\xi_u(X) - \nabla_X\xi,
\]
where $\nabla_X\xi \in E_x$ is considered as an element of T^v_uE. This definition of \tilde{X}_u is independent of the choices for ξ. Therefore, the horizontal subspace H^∇_u at u can be uniquely defined as a lifting subspace of T_uM in T_uE up to the linear connection ∇. We call $H^\nabla = \bigcup_{u \in E} H^\nabla_u$ the horizontal distribution. It is easy to check that H^∇ is a smooth distribution and that the following properties hold:

(a) $T_uE = H^\nabla_u \oplus T^v_uE$ at each $u \in E$.

(b) Let $v^\nabla : H^\nabla \oplus T^vE \to T^vE$ be a natural projection (vertical projection). If $Y \in T_uE$ with $d\xi_u(X) = Y$ for some section ξ, then
\[
v^\nabla(Y) = \nabla_X\xi .
\]

(c) The vertical projection v^∇ is also smooth. This means that for any smooth vector field X of TE, $v^\nabla(X)$ is a smooth vector field of T^vE.
(d) Given \(Y \in T_u E \setminus T^*_u E \), there is a unique vector \(X \in T_x M \) such that
\[d\xi(X) = Y \]
for some section \(\xi \). Therefore we have the natural projection from \(T_u E \) to \(T_x M \) and the canonical decomposition \(T_u E \approx T_{\pi(u)} M \times T^*_u E \).

4.2. Pseudo-holomorphic 1-jet bundle and its almost complex structure.

Given two smooth \((C^\infty)\) almost complex manifolds \((M^{2n}, J)\) and \((M'^{2m}, J')\), a \((J, J')\)-holomorphic (or pseudo-holomorphic) 1-jet bundle over \(M \times M' \) is defined by
\[
\mathcal{J}^1_{(J, J')}(M, M') = \bigcup_{(x, y) \in M \times M'} \text{Hom}(J_x, J'_y)(T_x M, T_y M'),
\]
where \(\text{Hom}(J_x, J'_y)(T_x M, T_y M') \) is the space of \((J_x, J'_y)\)-linear transformations from \(T_x M \) to \(T_y M' \). Now \(\pi = \pi_1 \times \pi_2 : \mathcal{J}^1_{(J, J')}(M, M') \to M \times M' \) is a vector bundle of rank \(2nm \). We will frequently use the notation \(\mathcal{J}^1(M, M') \) instead of \(\mathcal{J}^1_{(J, J')}(M, M') \) for simplicity.

Choose any linear connection \(\nabla \) on \(\mathcal{J}^1(M, M') \). We have the canonical identification
\[
T_u \mathcal{J}^1(M, M') \approx T_{\pi_1(u)} M \times T_{\pi_2(u)} M' \times T^*_u \mathcal{J}^1(M, M') \approx T_{\pi_1(u)} M \times T_{\pi_2(u)} M' \times \text{Hom}(\pi_1, \pi_2)^{(\gamma)}(T_{\pi_1(u)} M, T_{\pi_2(u)} M').
\]
By this, any tangent vector \(Y \in T_u \mathcal{J}^1(M, M') \) can be decomposed into
\[
Y = (X_1, X_2, v^\nabla(Y)),
\]
where:

i) \(X_1 \) and \(X_2 \) are images of the natural projection of \(Y \) into \(T_{\pi_1(u)} M \) and \(T_{\pi_2(u)} M' \), respectively,

ii) \(v^\nabla(Y) \) is considered as an element in \(\text{Hom}(\pi_1, \pi_2)^{(\gamma)}(T_{\pi_1(u)} M, T_{\pi_2(u)} M') \).

Now we can define an almost complex structure \(J^\nabla \) on \(\mathcal{J}^1(M, M') \) depending on \(\nabla \) by
\[
J^\nabla(Y) = (J_{\pi_1(u)} X_1, J'_{\pi_2(u)} X_2, J'_{\pi_2(u)} \circ v^\nabla(Y)).
\]

It is easy to see \(v^\nabla(J^\nabla(Y)) = J'_{\pi_2(u)} \circ v^\nabla(Y) \); hence \(J^\nabla \) is well defined. Furthermore, \(J^\nabla \) is a smooth almost complex structure. Hence \((\mathcal{J}^1(M, M'), J^\nabla) \) is also a smooth almost complex manifold.

Theorem 4.1 (Gauduchon [4]). There is a linear connection \(\nabla \) on \(\mathcal{J}^1(M, M') \) with following property:

For any pseudo-holomorphic mapping \(f : M \to M' \), its lifting \(L(f) : (M, J) \to (\mathcal{J}^1(M, M'), J^\nabla) \) is also pseudo-holomorphic.

4.3. Higher order jet bundles.

We can define the \(k \)-jet bundles over \(M \times M' \) inductively. But we need only the local information, so we shall consider the Euclidean case.

Let \((\Omega, J) \subset \mathbb{R}^{2n}\) and \((\Omega', J') \subset \mathbb{R}^{2m}\) be smooth almost complex domains. Let \((x_1, \ldots, x_{2n})\) and \((w_1, \ldots, w_{2m})\) be the standard coordinate systems for \(\mathbb{R}^{2n}\) and \(\mathbb{R}^{2m}\), respectively. Assume that
\[
\{\partial/\partial x_1, \ldots, \partial/\partial x_n\}
\]
is a complex basis of \(T_x \Omega \) for each \(x \in \Omega \).

Condition \((*)\) means that \(\{\partial/\partial x_1, \ldots, \partial/\partial x_n\} \) and its images under \(J_x \) form a real basis of \(T_x \Omega \).
By (⋆) a (J,J')-linear mapping from $T_2\Omega$ to $T_2\Omega'$ is completely determined by the images of $\{\partial/\partial x_1, \ldots, \partial/\partial x_n\}$; hence $J^1(\Omega, \Omega')$ is a trivial bundle. From now on, we consider $J^1(\Omega, \Omega')$ as an open set $\Omega \times \Omega' \times \mathbb{R}^{2nm}$ in $\mathbb{R}^{2(n + m + nm)}$. More precisely, a coordinate mapping is given by

$$(4.2) \quad \tau = \left(\pi_1(\tau), \pi_2(\tau), \left[dw_n(\tau(\partial/\partial x_j))_{\alpha=1,\ldots,2m} \right]_{j=1,\ldots,n} \right).$$

The lifting $L(f)$ of a pseudo-holomorphic mapping f is parameterized by

$$(4.3) \quad L(f)(x) = \left(x_1, \ldots, x_{2m}, f_1(x), \ldots, f_{2m}(x), \left[\frac{\partial f_\alpha}{\partial x_j}(x) \right]_{\alpha=1,\ldots,2m} \right).$$

To compare $\|f\|_{C^l}$ with $\|L(f)\|_{C^{l-1}}$, we have to consider the partial derivatives of f that are missing in the above expression of $L(f)(x)$. Solving the system of linear equations $J'_f \circ df = df \circ J$ with respect to $\{\partial f_\alpha/\partial x_j\}_{j>n}$, we have

$$\frac{\partial f_\beta}{\partial x_j}(x) = \sum_{\alpha=1}^{2m} \sum_{k=1}^{n} A_{jk}^{\alpha\beta}(x,f(x)) \frac{\partial f_\alpha}{\partial x_k}(x) \quad \text{on } \Omega$$

for $j > n$, where $A_{jk}^{\alpha\beta}$ is a globally defined C^{∞}-smooth function on $\Omega \times \Omega'$. Therefore, for each compact subset K in Ω and any positive integer l, there is a suitable constant M_l depending on K with

$$\left\| \frac{\partial f_\alpha}{\partial x_j} \right\|_{C^l(K)} \leq M_l \sum_{\beta=1}^{2m} \sum_{k=1}^{n} \left\| \frac{\partial f_\beta}{\partial x_k} \right\|_{C^{l-1}(K)}$$

for $j > n$. We may deduce that

$$(4.4) \quad \|f\|_{C^l(K)} \lesssim \|L(f)\|_{C^{l-1}(K)}$$

uniformly for $f \in \mathcal{O}(J,J')(\Omega, \Omega')$.

By the expression (4.3), we also obtain

Proposition 4.2. Let $f, g \in \mathcal{O}(J,J')(\Omega, \Omega')$ and $\nu \geq 1$. If f and g share the same ν-jet at $p \in \Omega$, then $L(f)$ and $L(g)$ share the same $(\nu - 1)$-jet at p.

We now go to the 2-jet.

Take any linear connection ∇_1 on $J^1(\Omega, \Omega')$. From our assumption (⋆) about Ω, the pseudo-holomorphic 2-jet bundle over $\Omega \times \Omega'$ defined by

$$J^2(\Omega, \Omega') = J^1(\Omega, \Omega') \times (\Omega, J^1(\Omega, \Omega'))$$

is also trivial. Choosing ∇_ν, inductively, we can define a pseudo-holomorphic $(\nu+1)$-jet bundle by

$$J^{\nu+1}(\Omega, \Omega') = J^1(\Omega, J^\nu(\Omega, \Omega')).$$

For any choice of ∇_ν at each step, $J^{\nu}(\Omega, \Omega')$ is always trivial.

From now on, we fix a suitable linear connection ∇_ν as in Theorem 4.1 at each step. Then for a pseudo-holomorphic mapping $f : \Omega \to \Omega'$, its lifting $L^{\nu}(f) = L(L^{\nu-1}(f)) : \Omega \to J^{\nu}(\Omega, \Omega')$ is always (J, J^{ν})-holomorphic.

Given $f \in \mathcal{O}(J,J')(\Omega, \Omega')$ and $p \in \Omega$, a family of mappings defined by

$$\mathcal{F}^{\nu}_p(f; \Omega, \Omega') = \{g \in \mathcal{O}(J,J')(\Omega, \Omega') : g \text{ has the same } \nu \text{-jet with } f \text{ at } p\}$$

has the following property.
Theorem 4.3. Let $(\Omega, J) \subset \mathbb{R}^{2n}$ and $(\Omega', J') \subset \mathbb{R}^{2m}$ be hyperbolic almost complex domains. Assume that Ω satisfies condition (\ast). For any $f \in \mathcal{O}(I,J;\Omega,\Omega')$, there is a neighborhood V_{ν} of p such that $\{L^\nu(g) : g \in F^\nu_p(f;\Omega,\Omega')\}$ is uniformly bounded on V_{ν}. Moreover, we can find V_{ν} such that $V_{\nu+1} \subset V_{\nu}$ for each $\nu = 1, 2, \ldots$.

Proof. Choose $r > 0$ such that the Kobayashi ball $U = B_{\mathcal{O}(J,\Omega)}(f(p), r)$ is a bounded neighborhood of $f(p)$ as in Theorem 3.2. Denote $V = B_{\mathcal{O}(J,\Omega)}(p, r)$. Since $F^\nu_p(f;\Omega,\Omega') = \{g \in \mathcal{O}(J,\Omega;\Omega,\Omega') : g(p) = f(p)\}$, we have $g(V) \subset U$ for any $g \in F^\nu_p(f;\Omega,\Omega')$. Take any relatively compact neighborhood V_1 of p in V. By Theorem 3.2, $\{\|g\|_{C^1(V_1)} : g \in F^\nu_p(f;\Omega,\Omega')\}$ is uniformly bounded so that $\{L(g) : g \in F^\nu_p(f;\Omega,\Omega')\}$ is uniformly bounded on V_1. This proves the case $\nu = 1$.

Since (V, J) and (U, J') are also Kobayashi hyperbolic, Theorem 3 in [11] implies that every bounded domain in $J^1(V, U)$ is hyperbolic with respect to J^∇. Therefore, we may assume that

$$
\bigcup_{g \in F^\nu_p(f;\Omega,\Omega')} L(g)(V_1) \subset \Omega_1,
$$

where Ω_1 is a hyperbolic neighborhood of $L(f)(p)$ in $J^1(V, U)$.

Suppose that our theorem holds for the case $\nu \leq \lambda$. Since the pair (V_1, J) and (Ω_1, J^∇) satisfy the assumption of the theorem, there are neighborhoods V'_1, \ldots, V'_λ of p in V_1 such that $\{L^\lambda(h) : h \in F^\nu_p(L(f); V_1, \Omega_1)\}$ is uniformly bounded on V'_ν for $\nu = 1, \ldots, \lambda$, and such that $V'_\lambda \subset V'_{\lambda-1} \subset \cdots \subset V'_1$. By Proposition 4.2, we have

$$L(F^\nu_p(f;\Omega,\Omega')) \subset F^{\nu-1}_p(L(f); V_1, \Omega_1)$$

for any ν. Therefore $L^{\nu+1}(g) = L^\nu(L(g))$ is uniformly bounded on $V_{\nu+1} = V'_\nu$ for $g \in F^\nu_p(f;\Omega,\Omega')$ and for $\nu = 1, \ldots, \lambda$. This proves the theorem by the induction hypothesis. \hfill \Box

For this sequence $\{V_\nu\}$ of nested neighborhoods of p, we have

Corollary 4.4. $\{\|g\|_{C^\nu(V_\nu)} : g \in F^{\nu-1}_p(f;\Omega,\Omega')\}$ is uniformly bounded.

Proof. From (4.2), we have

$$\|g\|_{C^\nu(V_\nu)} \lesssim \|L(g)\|_{C^{\nu-1}(V_\nu)} \lesssim \cdots \lesssim \|L^\nu(g)\|_{C^0(V_\nu)}$$

uniformly for $g \in \mathcal{O}(J,\Omega;\Omega,\Omega')$. When $g \in F^{\nu-1}_p(f;\Omega,\Omega')$, the last term of this inequality is bounded by Theorem 4.3. \hfill \Box

5. Proof of Theorem 1.2

Let (M, J) be a connected hyperbolic almost complex manifold of class C^∞. Suppose that there is a pseudo-holomorphic self-mapping $f : M \rightarrow M$ with $f(p) = p$ and $df_p = 1$ for some $p \in M$. From Proposition 2.2, f is of class C^∞ and we can compare all partial derivatives of f with those of the identity mapping. To prove that f is the identity, we need the unique continuation property for pseudo-holomorphic mappings.

Proposition 5.1. Let (M, J) and (M', J') be smooth almost complex manifolds. Moreover M is connected. Suppose that two pseudo-holomorphic mappings $f, g : M \rightarrow M'$ share the same ∞-jet at some point in M. Then $f \equiv g$ on M.
Proof. It is sufficient to prove that \(A = \{ p \in M : f \text{ and } g \text{ share the same } \infty\text{-jet at } p \} \) is open. Then our assertion follows, since \(A \) is open, closed and nonempty set.

Suppose that \(p \in A \). There is a neighborhood \(U_p \) of \(p \) such that any point \(q \) in \(U_p \) can be joined to \(p \) by a single pseudo-holomorphic disc (\cite{[6]} and \cite{[10]}). Take any \(q \) in \(U_p \) and suppose that there is a pseudo-holomorphic disc \(\phi : D \to M \) with \(\phi(0) = p \) and \(\phi(1/2) = q \). Since \(p \in A \), the two pseudo-holomorphic discs \(f \circ \phi, g \circ \phi : D \to M' \) share the same \(\infty\)-jet at \(0 \). By the unique continuation property of pseudo-holomorphic curves (see \cite{[3]} and \cite{[12]}), it holds that \(f \circ \phi = g \circ \phi \). Furthermore \(f(q) = g(q) \). Since \(q \) is an arbitrary point in \(U_p \), we have \(f|_{U_p} \equiv g|_{U_p} \). Hence \(p \in U_p \subset A \), and \(A \) is open. This proves the proposition. \(\Box \)

By Proposition \(5.1 \) it is sufficient to prove that \(D^\alpha f_j(p) = 0 \) for any \(j \) and any multi-indices \(|\alpha| \geq 2 \). Then \(f \) has the same \(\infty\)-jet with the identity mapping. Therefore \(f \) is the identity mapping.

Choose a local coordinate system \(\varphi : (V, 0) \to (M, p) \) about \(p \) with \(\varphi(V) \subset \subset M \). Since the Kobayashi distance function \(d_{(M, J)} \) is continuous, we can take a positive real number \(r < \min_{q \in \partial \varphi(V)} d_{(M, J)}(p, q) \). Then the Kobayashi ball \(B_{(M, J)}(p, r) \) is contained in \(\varphi(V) \). By the distance-decreasing property of the Kobayashi distance, we have \(f(B_{(M, J)}(p, r)) \subset B_{(M, J)}(p, r) \) for all \(r \). Now we identify \(p = 0 \), \(\varphi(V) = V \) is a bounded domain in \(\mathbb{R}^{2n} \) and \(J = \varphi^*J = (d\varphi)^{-1} \circ J \circ d\varphi \) is an induced almost complex structure on \(V \). For sufficiently small \(r \) we may assume that \((U = \varphi^{-1}(B_{(M, J)}(p, r)), J) \) satisfies condition (\(*)\) in Section \(4 \).

Consider an iterated family \(\{ f^m = f \circ f^{m-1} \}_{m=1, 2, \ldots} \) of \(f \). Note that \(f|_{U} \) is in \(\mathcal{O}(J, J)(U, U) \), so is \(f^m|_{U} \). Now we have

Proposition 5.2. \((D^\alpha(f^m)_j)(0) = m(D^\alpha f_j)(0) \) for \(|\alpha| = 2 \).

Suppose that \(D^\alpha f_j(0) = 0 \) for any \(2 \leq |\alpha| < \nu \) and \(j = 1, \ldots, 2n \). Then \((D^\beta(f^m)_j)(0) = m(D^\beta f_j)(0) \) for each \(|\beta| = \nu \) and each \(j \).

Proof. Since \(d(f^m)_0 = (df_0)^m = \text{Id} \), we have

\[
\frac{\partial(f^m)_j}{\partial x_k}(0) = \delta_{j,k}
\]

for \(m = 1, 2, \ldots \).

Let \(D^\alpha = \frac{\partial^2}{\partial x_{\alpha_1} \partial x_{\alpha_2}} \). Since \((f^m)_j = f_j \circ f^{m-1} \), we have

\[
\frac{\partial^2}{\partial x_{\alpha_1} \partial x_{\alpha_2}}(f^m)_j(0) = \frac{\partial}{\partial x_{\alpha_1}} \left(\sum_{k=1}^{2n} \frac{\partial f_j}{\partial x_k}(f^{m-1})(x) \frac{\partial(f^{m-1})_k}{\partial x_{\alpha_2}}(x) \right)(0) = \sum_{k=1}^{2n} \frac{\partial^2 f_j}{\partial x_{\alpha_1} \partial x_k}(f^{m-1})(0) \frac{\partial(f^{m-1})_k}{\partial x_{\alpha_2}}(0) + \sum_{k=1}^{2n} \frac{\partial f_j}{\partial x_k}(f^{m-1})(0) \frac{\partial^2(f^{m-1})_k}{\partial x_{\alpha_1} \partial x_{\alpha_2}}(0)
\]

where the last equality follows by \((5.1) \). This equation proves the case of \(|\alpha| = 2 \) by induction.
Suppose that $D^\alpha f_j(0) = 0$ for any $2 \leq |\alpha| < \nu$ and $j = 1, \ldots, 2n$. Let $|\beta| = \nu$ and $D^\beta = \frac{\partial^\nu}{\partial x_{\beta_1} \cdots \partial x_{\beta_n}}$. From (5.3), we obtain

$$D^\beta (f^m_j)(0) = \sum_{\gamma_1, \ldots, \gamma_\nu = 1}^{2n} \frac{\partial^\nu f_j}{\partial x_{\gamma_1} \cdots \partial x_{\gamma_\nu}} (f^{m-1}(0)) \frac{\partial (f^{m-1})_{\gamma_1}}{\partial x_{\beta_1}} \cdots \frac{\partial (f^{m-1})_{\gamma_\nu}}{\partial x_{\beta_n}} (0)
+ \text{ (terms which contain } D^\alpha f_j \text{ for } 2 \leq |\alpha| < \nu)
+ \sum_{k=1}^{2n} \frac{\partial f_j}{\partial x_k} (f^{m-1}(0)) \frac{\partial^\nu (f^{m-1})_k}{\partial x_{\beta_1} \cdots \partial x_{\beta_n}} (0)
= \frac{\partial^\nu f_j}{\partial x_{\beta_1} \cdots \partial x_{\beta_n}} (0) + \frac{\partial^\nu (f^{m-1})_j}{\partial x_{\beta_1} \cdots \partial x_{\beta_n}} (0)
= D^\beta f_j(0) + D^\beta (f^{m-1})_j(0).$$

This proves the proposition. \qed

We are now ready to complete the proof of Theorem 1.2. Suppose that $D^\alpha f_j(0) \neq 0$ for some multi-index α with $|\alpha| = 2$ and some j. By Proposition 5.3, we have $|(D^\alpha (f^m)_j)(0)| = m|(D^\alpha f_j)(0)| \to \infty$ as $m \to \infty$. Since $f^m(0) = f(0) = 0$ and $d(f^m)_0 = df_0 = \text{Id}$, we have $f^m \in F^\nu_0(f; U, U)$ for each m. Corollary 4.4 implies that $\{|(D^\alpha (f^m)_j)(0)|\}_{m=1,2,\ldots}$ must be bounded. Therefore it follows that $D^\alpha f_j(0) = 0$ for each $|\alpha| = 2$ and j.

Inductively let us assume that $D^\beta f_j(0) \neq 0$ and $D^\nu f_k(0) = 0$ for $2 \leq |\alpha| < |\beta| = \nu$ and $k = 1, \ldots, 2n$. Proposition 5.2 implies that $(D^\alpha (f^m)_k)(0) = m|(D^\alpha f_k)(0)| = 0$ for $2 \leq |\alpha| < \nu$ and $k = 1, \ldots, 2n$. Hence it follows that $f^m \in F^{\nu-1}_0(f; U, U)$. But Proposition 5.2 also means that $|(D^\beta (f^m)_j)(0)| = m|(D^\beta f_j)(0)| \to \infty$ as $m \to \infty$. It is a contradiction to Corollary 4.4. Therefore we have $D^\alpha f_j(0) = 0$ for any $|\alpha| \geq 2$.

Consequently f has same ∞-jet with the identity mapping at 0. This proves Theorem 1.2. \qed

Acknowledgment

This work is part of the author’s dissertation for his doctoral degree at the Pohang University of Science and Technology. He expresses his gratitude to his advisor Kang-Tae Kim for guidance and encouragement.

References

Department of Mathematics, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea

E-mail address: nyawoo@postech.ac.kr

Current address: Department of Mathematical Sciences, Seoul National University, Seoul, 151-747, Republic of Korea