Koszul duality and equivalences of categories
HTML articles powered by AMS MathViewer
- by Gunnar Fløystad PDF
- Trans. Amer. Math. Soc. 358 (2006), 2373-2398 Request permission
Abstract:
Let $A$ and $A^{!}$ be dual Koszul algebras. By Positselski a filtered algebra $U$ with $\text {gr} U = A$ is Koszul dual to a differential graded algebra $(A^{!},d)$. We relate the module categories of this dual pair by a $\otimes -\text {Hom}$ adjunction. This descends to give an equivalence of suitable quotient categories and generalizes work of Beilinson, Ginzburg, and Soergel.References
- A. A. Beĭlinson, V. A. Ginsburg, and V. V. Schechtman, Koszul duality, J. Geom. Phys. 5 (1988), no. 3, 317–350. MR 1048505, DOI 10.1016/0393-0440(88)90028-9
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on $\textbf {P}^{n}$ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67 (Russian). MR 509387
- Alexander Braverman and Dennis Gaitsgory, Poincaré-Birkhoff-Witt theorem for quadratic algebras of Koszul type, J. Algebra 181 (1996), no. 2, 315–328. MR 1383469, DOI 10.1006/jabr.1996.0122
- David Eisenbud, Gunnar Fløystad, and Frank-Olaf Schreyer, Sheaf cohomology and free resolutions over exterior algebras, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4397–4426. MR 1990756, DOI 10.1090/S0002-9947-03-03291-4
- G. Fløystad. Describing coherent sheaves on projective spaces via Koszul duality. preprint, math.AG/9912212.
- R. Fröberg, Koszul algebras, Advances in commutative ring theory (Fez, 1997) Lecture Notes in Pure and Appl. Math., vol. 205, Dekker, New York, 1999, pp. 337–350. MR 1767430
- Edward L. Green and Roberto Martínez Villa, Koszul and Yoneda algebras, Representation theory of algebras (Cocoyoc, 1994) CMS Conf. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 1996, pp. 247–297. MR 1388055
- Edward L. Green, Idun Reiten, and Øyvind Solberg, Dualities on generalized Koszul algebras, Mem. Amer. Math. Soc. 159 (2002), no. 754, xvi+67. MR 1921583, DOI 10.1090/memo/0754
- Mark Goresky, Robert Kottwitz, and Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83. MR 1489894, DOI 10.1007/s002220050197
- Werner Greub, Stephen Halperin, and Ray Vanstone, Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles, Pure and Applied Mathematics, Vol. 47, Academic Press, New York-London, 1972. MR 0336650
- Dale Husemoller, John C. Moore, and James Stasheff, Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra 5 (1974), 113–185. MR 365571, DOI 10.1016/0022-4049(74)90045-0
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
- Bernhard Keller, Tilting theory and differential graded algebras, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, pp. 183–190. MR 1308986
- B. Keller. Koszul duality and coderived categories (after K. Lefèvre) available at www.math.jussieu.fr/${}^\sim$keller.
- Steffen König and Alexander Zimmermann, Derived equivalences for group rings, Lecture Notes in Mathematics, vol. 1685, Springer-Verlag, Berlin, 1998. With contributions by Bernhard Keller, Markus Linckelmann, Jeremy Rickard and Raphaël Rouquier. MR 1649837, DOI 10.1007/BFb0096366
- Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456. MR 1002456, DOI 10.1112/jlms/s2-39.3.436
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Yu. I. Manin, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 4, 191–205 (English, with French summary). MR 927397
- Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996. Translated from the 1988 Russian original. MR 1438306, DOI 10.1007/978-3-662-03220-6
- L. E. Positsel′skiĭ, Nonhomogeneous quadratic duality and curvature, Funktsional. Anal. i Prilozhen. 27 (1993), no. 3, 57–66, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 27 (1993), no. 3, 197–204. MR 1250981, DOI 10.1007/BF01087537
- Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. MR 265437, DOI 10.1090/S0002-9947-1970-0265437-8
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
Additional Information
- Gunnar Fløystad
- Affiliation: Matematisk Institutt, University of Bergen, Johannes Brunsgate 12, 5008 Bergen, Norway
- Email: gunnar@mi.uib.no
- Received by editor(s): January 26, 2004
- Published electronically: December 20, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 358 (2006), 2373-2398
- MSC (2000): Primary 16S37, 16D90
- DOI: https://doi.org/10.1090/S0002-9947-05-04035-3
- MathSciNet review: 2204036