Koszul duality and equivalences of categories
Author:
Gunnar Fløystad
Journal:
Trans. Amer. Math. Soc. 358 (2006), 2373-2398
MSC (2000):
Primary 16S37, 16D90
DOI:
https://doi.org/10.1090/S0002-9947-05-04035-3
Published electronically:
December 20, 2005
MathSciNet review:
2204036
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let
and
be dual Koszul algebras. By Positselski a filtered algebra
with gr
is Koszul dual to a differential graded algebra
. We relate the module categories of this dual pair by a
Hom adjunction. This descends to give an equivalence of suitable quotient categories and generalizes work of Beilinson, Ginzburg, and Soergel.
- 1. A. A. Beĭlinson, V. A. Ginsburg, and V. V. Schechtman, Koszul duality, J. Geom. Phys. 5 (1988), no. 3, 317–350. MR 1048505, https://doi.org/10.1016/0393-0440(88)90028-9
- 2. Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, https://doi.org/10.1090/S0894-0347-96-00192-0
- 3.
I. Bernstein, I. Gelfand, S. Gelfand. Algebraic bundles over
and problems of linear algebra. Funkts. Anal. Prilozh. 12 (1978); English translation in Functional Analysis and its Applications 12 (1978), 212-214. MR 0509387 (80c:14010a)
- 4. Alexander Braverman and Dennis Gaitsgory, Poincaré-Birkhoff-Witt theorem for quadratic algebras of Koszul type, J. Algebra 181 (1996), no. 2, 315–328. MR 1383469, https://doi.org/10.1006/jabr.1996.0122
- 5. David Eisenbud, Gunnar Fløystad, and Frank-Olaf Schreyer, Sheaf cohomology and free resolutions over exterior algebras, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4397–4426. MR 1990756, https://doi.org/10.1090/S0002-9947-03-03291-4
- 6. G. Fløystad. Describing coherent sheaves on projective spaces via Koszul duality. preprint, math.AG/9912212.
- 7. R. Fröberg, Koszul algebras, Advances in commutative ring theory (Fez, 1997) Lecture Notes in Pure and Appl. Math., vol. 205, Dekker, New York, 1999, pp. 337–350. MR 1767430
- 8. Edward L. Green and Roberto Martínez Villa, Koszul and Yoneda algebras, Representation theory of algebras (Cocoyoc, 1994) CMS Conf. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 1996, pp. 247–297. MR 1388055
- 9. Edward L. Green, Idun Reiten, and Øyvind Solberg, Dualities on generalized Koszul algebras, Mem. Amer. Math. Soc. 159 (2002), no. 754, xvi+67. MR 1921583, https://doi.org/10.1090/memo/0754
- 10. Mark Goresky, Robert Kottwitz, and Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83. MR 1489894, https://doi.org/10.1007/s002220050197
- 11. Werner Greub, Stephen Halperin, and Ray Vanstone, Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 47. MR 0336650
- 12. Dale Husemoller, John C. Moore, and James Stasheff, Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra 5 (1974), 113–185. MR 0365571, https://doi.org/10.1016/0022-4049(74)90045-0
- 13. Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006
- 14. Bernhard Keller, Tilting theory and differential graded algebras, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, pp. 183–190. MR 1308986
- 15.
B. Keller. Koszul duality and coderived categories (after K. Lefèvre) available at www.math.jussieu.fr/
keller.
- 16. Steffen König and Alexander Zimmermann, Derived equivalences for group rings, Lecture Notes in Mathematics, vol. 1685, Springer-Verlag, Berlin, 1998. With contributions by Bernhard Keller, Markus Linckelmann, Jeremy Rickard and Raphaël Rouquier. MR 1649837
- 17. Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456. MR 1002456, https://doi.org/10.1112/jlms/s2-39.3.436
- 18. Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- 19. Y. Manin. Some remarks on Koszul algebras and quantum groups. Ann. Inst. Fourier, Grenoble 37 no. 4 (1987), 191-205. MR 0927397 (89e:16022)
- 20. Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996. Translated from the 1988 Russian original. MR 1438306
- 21. L. E. Positsel′skiĭ, Nonhomogeneous quadratic duality and curvature, Funktsional. Anal. i Prilozhen. 27 (1993), no. 3, 57–66, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 27 (1993), no. 3, 197–204. MR 1250981, https://doi.org/10.1007/BF01087537
- 22. Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. MR 0265437, https://doi.org/10.1090/S0002-9947-1970-0265437-8
- 23. Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16S37, 16D90
Retrieve articles in all journals with MSC (2000): 16S37, 16D90
Additional Information
Gunnar Fløystad
Affiliation:
Matematisk Institutt, University of Bergen, Johannes Brunsgate 12, 5008 Bergen, Norway
Email:
gunnar@mi.uib.no
DOI:
https://doi.org/10.1090/S0002-9947-05-04035-3
Received by editor(s):
January 26, 2004
Published electronically:
December 20, 2005
Article copyright:
© Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.


