LOWER AND UPPER LOEB-INTEGRALS

D. LANDERS AND L. ROGGE

Abstract. We introduce the concepts of lower and upper Loeb-integrals for an internal integration structure. These are concepts which are similarly useful for Loeb’s internal integration theory as the concepts of inner and outer Loeb-measures for Loeb’s measure theory.

1. Introduction and notation

Almost the whole nonstandard measure and probability theory is based on fundamental concepts and results of Loeb. Starting from an internal content, Loeb constructed in particular an important standard measure, called Loeb-measure in the literature (see [8], [9]). This Loeb-measure has been investigated and applied in many papers by Loeb and other authors to obtain new results in various fields of mathematics such as e.g. in mathematical physics and economics, in measure and probability theory and in potential theory. Loeb extended his measure theoretical approach to integration theory and introduced the so-called Loeb-integrals (see [10], [11]).

To construct the Loeb-measure, Loeb used the Carathéodory extension theorem. Another construction of the Loeb-measure for finite internal contents can be given in terms of the inner and outer Loeb-measures. Sommers (see [13]) investigated inner Loeb-measures also for nonfinite internal contents.

Inner and outer Loeb-measures are very powerful concepts that can be used in many situations. Inner and outer Loeb-measures have been applied e.g. in the construction of Radon measures and τ-smooth measures, in the extension of τ-smooth Baire or Radon-Baire measures to τ-smooth Borel or Radon-Borel measures, or in compactness criteria for families of probability measures with respect to the weak topology (see [5], [6]).

To develop the Loeb integration theory for internal integration structures we introduce a lower and an upper Loeb-integral; concepts which are of comparable interest and usefulness as inner and outer Loeb-measures. A similar concept of lower Loeb-integrals can be found in Aldaz (see [1]).

In the following we consider a sufficiently rich superstructure \hat{S} and work with a nonstandard model for this superstructure, which is polysaturated, i.e. if C is a system of internal sets with cardinality $|C|$ smaller than or equal to the cardinality $|\hat{S}|$, then we have $\bigcap_{C \in C} C \neq \emptyset$ if C has the finite intersection property. For the general theory of nonstandard-analysis see the books of Cutland [2], Hurd-Loeb [4].

Received by the editors October 5, 2001.

2000 Mathematics Subject Classification. Primary 28E05; Secondary 26E35.

Key words and phrases. Loeb-measure, Loeb-integral, τ-continuity.

©2006 American Mathematical Society
Reverts to public domain 28 years from publication
or \[7\]. Let \(fin(*\mathbb{R})\) be the set of finite numbers of \(*\mathbb{R}\). For \(a \in fin(*\mathbb{R})\), \(\circ a\) denotes the standard number nearest to \(a\) in \(\mathbb{R}\). If \(a \in *\mathbb{R}\) is negative (positive) infinite put \(\circ a = -\infty (\infty)\).

In the following, let \(\mathcal{E} \subset *\mathbb{R}\) be an internal Stonian lattice and let \(i : \mathcal{E} \to *\mathbb{R}\) be an internal, positive linear functional, i.e. \(i\) is internal and for all \(e, e_1, e_2 \in \mathcal{E}\) and \(\alpha_1, \alpha_2 \in *\mathbb{R}\)

\[
(1) \quad |e| \in \mathcal{E}, 1 \wedge e \in \mathcal{E} \quad \text{and} \quad \alpha_1 e_1 + \alpha_2 e_2 \in \mathcal{E};
\]

\[
(2) \quad i(\alpha_1 e_1 + \alpha_2 e_2) = \alpha_1 i(e_1) + \alpha_2 i(e_2);
\]

\[
(3) \quad e \geq 0 \Rightarrow i(e) \geq 0.
\]

We call \((\mathcal{E}, i)\) an internal integration structure on \(Y\) (see Hurd-Loeb \[4\], pp. 166–168). Let

\[
\mathcal{E}^{fin} := \{e \in \mathcal{E} : i(|e|) \in fin(*\mathbb{R})\}
\]

and put, for \(g : Y \to *\mathbb{R}\),

\[
i_{\mathcal{E}}(g) := \sup\{i(e) : E^{fin} \ni e \leq g\};
\]

\[
i_{\mathcal{E}}(g) := \inf\{i(e) : g \leq e \in E^{fin}\};
\]

\[
\mathcal{L}(i) := \{f \in \mathcal{E}^Y : i(f) = \mathcal{L}(f) \in \mathbb{R}\}.
\]

\(\mathcal{E}\) is called the lower Loeb-integral, \(\mathcal{L}\) the upper Loeb-integral and \(\mathcal{L}(i)\) the system of Loeb-integrable functions. If \(f \in \mathcal{L}(i)\), we write \(i^L(f)\) instead of \(i(f) (= \mathcal{L}(f))\), and call \(i^L(f)\) the Loeb-integral of \(f\).

Let \(\rho : \mathcal{P}(Y) \to [0, \infty]\) be a monotone function with \(\rho(\emptyset) = 0\). Then it is well known that \(\mathcal{M}(\rho) := \{M \subset Y : \forall A \in \mathcal{P}(Y) (\rho(A) = \rho(A \cap M) + \rho(A \setminus M))\}\) is an algebra and \(\rho\) is an additive function on \(\mathcal{M}(\rho)\). We apply this result in the following to the set functions \(\rho = \hat{i}\) or \(\rho = \hat{i}\), where \(\hat{i}(A) := \mathcal{L}(1_A), \hat{i}(A) := \mathcal{L}(1_A)\) for \(A \in \mathcal{P}(Y)\).

Furthermore

\[
\mathcal{M}_0 := \{A \in \mathcal{P}(Y) : 1_A \in \mathcal{L}(i)\} = \{A \in \mathcal{P}(Y) : \hat{i}(A) = \mathcal{L}(A) \in \mathbb{R}\}
\]

is called the system of Loeb-integrable sets. For \(M_0 \in \mathcal{M}_0\) we also write \(i^L(M_0)\) instead of \(\mathcal{L}(M_0)(= \mathcal{L}(M_0))\). The systems \(\mathcal{M}(\hat{i})\), respectively \(\mathcal{M}(\hat{i})\), are called the system of lower Loeb-measurable sets, respectively upper Loeb-measurable sets.

2. The main results

The following theorem shows that our system \(\mathcal{L}(i)\) is the same system as introduced by Loeb in \[10\], \[11\] and \[4\].

1. **Theorem.** For a function \(f : Y \to \mathbb{R}\) the following are equivalent:

 \(\text{(i)} \quad f \in \mathcal{L}(i)\);

 \(\text{(ii)} \quad \text{there exist } e_n \in \mathcal{E}^{fin} \text{ with } \hat{i}(|f - e_n|) \to 0;\)

 \(\text{(iii)} \quad \text{there exists } e \in \mathcal{E}^{fin} \text{ with } \hat{i}(|f - e|) = 0.\)

 If \(e_n\) is a sequence fulfilling (ii), then \(i^L(f) = \lim_{n \to \infty} i(e_n);\) if \(e\) is a function fulfilling (iii), then \(i^L(f) = \circ i(e).\)

Let us remark that even for the formulation of Theorem 1 it is essential that we have defined the upper Loeb-integral \(\mathcal{L}\) for functions with values in \(*\mathbb{R}\) and not only for functions with values in \(\mathbb{R}\).
Most of the parts of the following theorem are due to Loeb (see \cite{Loeb1959a, Loeb1959b}). The proofs given here are different and use the properties of the inner and outer Loeb-integral.

2. Theorem. (i) \(i^L : \mathcal{L}(i) \to \mathbb{R}\) is a positive linear functional on the Sтонian lattice \(\mathcal{L}(i)\).
 (ii) \(\mathcal{L}(i) \ni f_n \uparrow f \in \mathbb{R}^Y\) and \(\sup_{n \in \mathbb{N}} i^L(f_n) < \infty\) imply \(f \in \mathcal{L}(i)\) and \(i^L(f_n) \uparrow i^L(f)\).
 (iii) \(f, h \in \mathcal{L}(i)\) and \(f \leq g \leq h\) with \(i^L(f) = i^L(h)\) imply \(g \in \mathcal{L}(i)\).

The following theorem shows that the Loeb-integral \(i^L\) on \(\mathcal{L}(i)\) is in fact a classical Lebesgue-integral with respect to the measure space \((Y, \mathcal{M}(\bar{\tau}), \bar{\tau})\).

3. Theorem. (i) \(\bar{\tau}\) is a complete and saturated measure on the \(\sigma\)-algebra \(\mathcal{M}(\bar{\tau})\).
 (ii) \(\mathcal{M}(\bar{\tau}) = \{A \subset Y : (\forall M_0 \in \mathcal{M}_0)(A \cap M_0 \in \mathcal{M}_0)\}\).
 (iii) \(\mathcal{M}_0\) is a \(\delta\)-ring and \(\mathcal{M}_0 = \{A \in \mathcal{M}(\bar{\tau}) : \bar{\tau}(A) \in \mathbb{R}\}\).
 (iv) \(\bar{\tau}(f) = \int f \, d\bar{\tau}\) for each \(\mathcal{M}(\bar{\tau})\)-measurable function \(f : Y \to [0, \infty]\).
 (v) \(L(i) \subset \{f \in \mathbb{R}^Y : f = \int f \, d\bar{\tau}\}\) and \(i^L(f) = \int f \, d\bar{\tau}\) for each \(f \in L(i)\).
 (vi) \(0 \leq f \in L(i)\) and \(r > 0 \Rightarrow \{f > r\} \in \mathcal{M}_0\).

In the following theorem we consider the lower Loeb-integral and compare it with the classical Lebesgue-integral with respect to the measure space \((Y, \mathcal{M}(\bar{\tau}), \bar{\tau})\).

4. Theorem. (i) \(\bar{\tau}\) is a complete measure on the \(\sigma\)-algebra \(\mathcal{M}(\bar{\tau})\).
 (ii) \(\mathcal{M}(\bar{\tau}) \subset \mathcal{M}(\bar{\tau})\).
 (iii) \(\mathcal{M}_0 \subset \{A \in \mathcal{M}(\bar{\tau}) : \bar{\tau}(A) \in \mathbb{R}\}\).
 (iv) \(\bar{\tau}(f) = \int f \, d\bar{\tau}\) for each \(\mathcal{M}(\bar{\tau})\)-measurable function \(f : Y \to [0, \infty]\).
 (v) \(L(i) \subset \{f \in \mathbb{R}^Y : f = \int f \, d\bar{\tau}\}\) and \(i^L(f) = \int f \, d\bar{\tau}\) for each \(f \in L(i)\).

Let us remark (see Example 20 in \S3) that it can happen that:
 (i) \(\bar{\tau}|\mathcal{M}(\bar{\tau})\) is not a saturated measure;
 (ii) \(\mathcal{M}(\bar{\tau}) \subset \mathcal{M}(\bar{\tau})\);
 (iii) \(\mathcal{M}_0 \subset \{A \in \mathcal{M}(\bar{\tau}) : \bar{\tau}(A) \in \mathbb{R}\}\);
 (iv) \(L(i) \subset \{f \in \mathbb{R}^Y : f = \int f \, d\bar{\tau}\}\).

If \(f : Y \to [0, \infty]\) is \(\mathcal{M}(\bar{\tau})\)-, respectively \(\mathcal{M}(\bar{\tau})\)-, measurable, then we write \(\bar{i}(f), \bar{\tau}(f)\), respectively \(i^L(f), \bar{i}(f)\), for \(\int f \, d\bar{\tau}, \int f \, d\bar{\tau}\). This notation is justified by Theorem 3 (iv), respectively Theorem 4 (iv), for real-valued functions. Observe that for a function \(f : Y \to [0, \infty]\) which attains the value \(\infty\), \(\bar{i}(f)\) and \(\bar{\tau}(f)\) were not defined before.

The following example shows that internal contents lead in a natural way to upper and lower Loeb-integrals which coincide on sets with the inner and outer Loeb-measures.
If \(\nu : \mathcal{R} \rightarrow {}^*[0, \infty] \) is an internal content on a ring \(\mathcal{R} \subseteq \mathcal{P}(Y) \), then
\[
\nu(A) := \sup \left\{ \sigma(\nu) : \mathcal{R} \ni R \subseteq A \right\},
\]
\[
\overline{\nu}(A) := \inf \left\{ \sigma(\nu) : A \subseteq R \in \mathcal{R} \right\}
\]
denote the usual inner and outer Loeb-measure of \(\nu \).

5. Example. Let \(\nu : \mathcal{R} \rightarrow {}^*[0, \infty] \) be an internal content on a ring \(\mathcal{R} \subseteq \mathcal{P}(Y) \). Let \(\mathcal{E} \) be the system of all internal sums \(\sum_{j=1}^{h} \alpha_j 1_{R_j} \) with \(\alpha_j \in {}^*\mathbb{R}, R_j \in \mathcal{R}, h \in {}^*\mathbb{N} \) and put
\[
i_{\nu}(\sum_{j=1}^{h} \alpha_j 1_{R_j}) = \sum_{j=1}^{h} \alpha_j \nu(R_j).
\]

Then \(\mathcal{E} \) is an internal Stonian lattice, \(i_{\nu} : \mathcal{E} \rightarrow {}^*\mathbb{R} \) is an internal positive linear functional and we have
(i) \(\nu(R) = \overline{\nu}(R) = \sigma(\nu(R)) \) for all \(R \in \mathcal{R} \);
(ii) \(\nu(A) = \nu(A), \overline{\nu}(A) = \nu(A) \) for all \(A \subseteq Y \);
(iii) \(\mathcal{M}_0 = \{ A \subseteq Y : \nu(A) = \overline{\nu}(A) < \infty \} \);
(iv) \(\mathcal{R} \subseteq \mathcal{M}(\nu) \subseteq \mathcal{M}(\overline{\nu}) \);
(v) \(\nu \) is a complete measure on the \(\sigma \)-algebra \(\mathcal{M}(\nu) \); \(\overline{\nu} \) is a complete and saturated measure on the \(\sigma \)-algebra \(\mathcal{M}(\overline{\nu}) \).

The following theorem generalizes the \(\check{S} \)-continuity of the inner and outer Loeb-measure for finite internal contents (see [3]) to \(\check{S} \)-continuity of inner and outer Loeb-integrals.

6. Theorem. Let \(\mathcal{E}_1 \subseteq \mathcal{E} \) with cardinality of \(\mathcal{E}_1 \) smaller than or equal to \(\check{S} \). Then
(i) \(\sup e \in \mathcal{E}_1 \) is \(\mathcal{M}(\check{\nu}) \)-measurable.

If \(\mathcal{E}_1 \) is furthermore an upwards directed system of nonnegative functions, then
(ii) \(\check{\sup} e \in \mathcal{E}_1 \equiv \check{\sup} e \in \mathcal{E}_1 \);
(iii) \(\check{\sup} e \in \mathcal{E}_1 \equiv \check{\sup} e \in \mathcal{E}_1 \);
(iv) \(\check{\sup} e \in \mathcal{E}_1 \equiv \check{\sup} e \in \mathcal{E}_1 \).

The following two theorems are fundamental for the application of inner and outer Loeb-integrals to obtain similar representation results as were given for finite Loeb-measures in [3]; in these cases \(Y_0 \) is the set \(ns^*X \) of near-standard points, which is in general not measurable. Applications of the following two theorems will be given in a forthcoming paper.

7. Theorem. Let \(\emptyset \neq Y_0 \subseteq Y \). Then
(i) \(\check{\nu} M(\check{\nu}) \cap Y_0, \check{\nu} M(\check{\nu}) \cap Y_0 \cap Y_0 \) are measures;
(ii) \(\check{\nu}(f 1_{Y_0}) = \int f|_{Y_0} d\check{\nu}|_{Y_0}; \)
(iii) \(\check{\nu}(f 1_{Y_0}) = \int f|_{Y_0} d\check{\nu}|_{Y_0}; \)
where we assume in (ii), respectively (iii), that the function \(f : Y \rightarrow [0, \infty] \) is \(\mathcal{M}(\check{\nu}), \text{ respectively } \mathcal{M}(\check{\nu}), \) measurable and \(\check{\nu}|_{Y_0}, \text{ respectively } \check{\nu}|_{Y_0}, \) is the measure \(\check{\nu} M(\check{\nu}) \cap Y_0, \text{ respectively } \check{\nu} M(\check{\nu}) \cap Y_0. \)

If \(f : Y \rightarrow [0, \infty] \) is \(\mathcal{M}(\check{\nu}), \text{ respectively } \mathcal{M}(\check{\nu}), \) measurable, then we write \(\check{\nu}(f 1_{Y_0}), \text{ respectively } \check{\nu}(f 1_{Y_0}), \) for \(\int f|_{Y_0} d\check{\nu}|_{Y_0}, \text{ respectively } \int f|_{Y_0} d\check{\nu}|_{Y_0}. \) This notation is justified by Theorem 7.
8. Theorem. Let $\mathcal{E}_1 \subseteq \mathcal{E}$ be an upwards directed system of nonnegative functions with cardinality smaller than or equal to \bar{S}. Then for each $Y_0 \subseteq Y$ we have

(i) $\bar{\iota}(\sup_{e \in \mathcal{E}_1} \delta e Y_0) = \sup_{e \in \mathcal{E}_1} \bar{\iota}(\delta e Y_0)$;
(ii) $\bar{\tau}(\sup_{e \in \mathcal{E}_1} \delta e Y_0) = \sup_{e \in \mathcal{E}_1} \bar{\tau}(\delta e Y_0)$;

where we assume in (i) and (ii) that the left-hand terms are finite.

We show in Example 19 in §3 that the finiteness condition in Theorem 8 (ii) cannot be omitted.

3. Auxiliary lemmata and proof of the results

Proof of Theorem 1. (iii)⇒(ii) is trivial. (ii)⇒(i) follows by definition of $\bar{\iota}$ and $\mathcal{L}(i)$.

(i)⇒(iii) By (i) there exist for each $n \in \mathbb{N}$ functions $g_n, h_n \in \mathcal{E}^{fin}$ with

\begin{align*}
(1) & \quad \circ i(h_n) - 1/n \leq \circ i(f) \leq \circ i(g_n) + 1/n, \\
(2) & \quad g_n \leq f \leq h_n.
\end{align*}

Put $\mathcal{H}_n := \{ e \in \mathcal{E} : g_n \leq e \leq h_n \}$. Then $\bigcap_{i=1}^{n} \mathcal{H}_i \neq \emptyset$ by (2). Hence there exists by saturation $e \in \bigcap_{i=1}^{\infty} \mathcal{H}_i$. This e fulfills (iii). The remaining assertions are obvious.

1. Lemma. We have for $g, g_1, g_2 \in \ast \mathbb{R}^Y$ and $0 \leq \alpha \in \mathbb{R}$

(i) $\bar{\iota}(g) \leq \bar{\iota}(g), \bar{\tau}(g) = -\bar{\tau}(g)$;
(ii) $\bar{\iota}(\alpha g) = \alpha \bar{\iota}(g), \bar{\tau}(\alpha g) = \alpha \bar{\tau}(g)$;
(iii) $g_1 \leq g_2 \Rightarrow \bar{\iota}(g_1) \leq \bar{\iota}(g_2), \bar{\tau}(g_1) \leq \bar{\tau}(g_2)$;
(iv) $\bar{\iota}(g_1 + g_2) \leq \bar{\iota}(g_1) + \bar{\iota}(g_2), \bar{\tau}(g_1 + g_2) \geq \bar{\tau}(g_1) + \bar{\tau}(g_2)$, whenever the right side is defined;
(v) $\bar{\iota}(g_1 + g_2) \leq \bar{\iota}(g_1) + \bar{\tau}(g_2)$ if $0 \leq g_1, g_2$;
(vi) $\bar{\iota}(g_1 + g_2) \leq \bar{\iota}(g_1) + \bar{\iota}(g_2)$, if $0 \leq g_1, g_2$ and $g_1 + g_2 \in \mathcal{L}(i)$;
(vii) $0 \leq f_n \uparrow f, f_n, f \in \mathbb{R}^Y \Rightarrow \bar{\tau}(f_n) \uparrow \bar{\tau}(f)$.

Proof. (i)–(v) follow directly from the definitions of $\bar{\iota}$ and $\bar{\tau}$. (vi) follows by using (v), (iv) and (i).

(vii) According to (iii) there exists $\alpha \geq 0$ with $\bar{\tau}(f_n) \uparrow \alpha$. Let w.l.o.g. $\alpha < \infty$ and let $\varepsilon \in \mathbb{R}_+$ be given. It suffices to show for each fixed $\delta \in \mathbb{R}_+$ that

\begin{equation}
\bar{\tau}(f) \leq (1 + \delta)(\alpha + \varepsilon).
\end{equation}

According to the definition of $\bar{\tau}$ there exist $g_n \in \mathcal{E}^{fin}$ with $f_n \leq g_n$ and $\circ i(g_n) \leq \bar{\tau}(f_n) + \varepsilon/2^n$. Then $h_n := g_1 \vee \ldots \vee g_n$ fulfill (use induction)

\begin{equation}
f_n \leq h_n \in \mathcal{E}^{fin}, \circ i(h_n) \leq \bar{\tau}(f_n) + \sum_{i=1}^{n} \varepsilon/2^i.
\end{equation}

Put $\mathcal{H}_n := \{ h \in \mathcal{E} : h_n \leq h, i(h) \leq \alpha + \varepsilon \}$. Then \mathcal{H}_n are internal with $\emptyset \neq \mathcal{H}_n \downarrow$.

Hence there exists $h \in \bigcap_{n=1}^{\infty} \mathcal{H}_n$. Then by (2) and $f_n \uparrow f$ we obtain $f \leq (1 + \delta)h$. Hence we obtain (1).

Proof of Theorem 2. (i) follows directly from Lemma 1 and Theorem 1.

(ii) As $0 \leq f_n \downarrow f - f_1 \in \mathbb{R}^Y$ we obtain the assertion from Lemma 1(vii) using (i).

(iii) follows from the definition of $\mathcal{L}(i)$.
2. Lemma. Let \(e \in \mathcal{E}^{fin} \) with \(e(Y) \subset \text{fin}(\mathbb{R}) \) be given. Then \(e \in \mathcal{L}(i) \). If furthermore \(0 \leq e \), then \(i^L(e) \leq \sigma i(e) \).

Proof. Let w.l.o.g. \(e \geq 0 \) and put \(e_n := (e - 1/n)^+ \). Then

\[
\begin{align*}
(1) & \quad 0 \leq e_n \in \mathcal{E}^{fin}, \quad \sigma e_n \uparrow \sigma e; \\
(2) & \quad |e_n - \sigma e_n| \leq \alpha e \text{ for all } 0 < \alpha \in \mathbb{R}.
\end{align*}
\]

By (2) we obtain \(\overline{\sigma}(e_n - \sigma e_n) = 0 \). Hence \(\sigma e_n \in \mathcal{L}(i) \) by Theorem 1. Since \(\sup_n i^L(\sigma e_n) \leq \sigma i(e) < \infty \) we obtain the assertions using (1) and Theorem 2(ii). \(\square \)

3. Lemma. Let \(f_0 : Y \to [0, \infty] \). Then

\[
\overline{i}(f_0) = \inf \{ \lim i^L(f_n) : f_0 \leq \lim f_n, \ \mathcal{L}(i) \ni f_n \uparrow \} =: i^L(f_0).
\]

Proof. If \(\mathcal{L}(i) \ni f_n \uparrow \) and \(f_0 \leq \lim f_n \), then by Lemma 1 (vii):

\[
\overline{i}(f_0) = \overline{i}(\lim (f_0 \wedge f_n)) = \lim_{n \in \mathbb{N}} \overline{i}(f_0 \wedge f_n) \leq \lim_{n \in \mathbb{N}} \overline{i}(f_n).
\]

Hence \(\overline{i}(f_0) \leq i^L(f_0) \). To prove the converse let \(\overline{i}(f_0) < \infty \). Let \(e \in \mathcal{E}^{fin} \) with \(f_0 \leq e \). We have to prove

\[
(1) \quad i^L(f_0) \leq \overline{i}(e).
\]

Put \(f_n := \sigma e \wedge n = \sigma(e \wedge n) \). As \(e \wedge n \in \mathcal{E}^{fin} \) we obtain \(f_n \in \mathcal{L}(i) \) and \(i^L(f_n) \leq \overline{i}(e \wedge n) \leq \overline{i}(e) \) by Lemma 2. Hence \(i^L(f_0) \leq \lim_{n \to \infty} i^L(f_n) \leq \overline{i}(e) \), as \(\mathcal{L}(i) \ni f_n \uparrow \) and \(f_0 \leq \lim f_n \).

The following concept is essentially due to Loeb (see [10, 4]).

4. Definition. We call \(\langle J, j \rangle \) a complete integration structure if \(J \subset \mathbb{R}^Y \) is a Stonian vector-lattice and \(j : J \to \mathbb{R} \) is a positive linear functional with the following properties:

\[
\begin{align*}
(1) & \quad J \ni f_n \uparrow f \in \mathbb{R}^Y \text{ and } \sup_{n \in \mathbb{N}} j(f_n) < \infty \Rightarrow f \in J \text{ and } j(f_n) \uparrow j(f), \\
(2) & \quad f, h \in J, \quad f \leq g \leq h \text{ and } j(f) = j(h) \Rightarrow g \in J.
\end{align*}
\]

According to Theorem 2, \(\langle \mathcal{L}(i), i^L \rangle \) is a complete integration structure. For a complete integration structure put, for \(g \in \mathbb{R}^Y \),

- \(\overline{j}(g) := \inf \{ \lim j(f_n) : g \leq \lim f_n, J \ni f_n \uparrow \} \),
- \(j(g) := \sup \{ \lim j(f_n) : \lim f_n \leq g, J \ni f_n \uparrow \} \),
- \(\overline{M}_0 := \{ A \subset Y : 1_A \in J \} \),
- \(M := \{ A \subset Y : A \cap M_0 \in \overline{M}_0 \text{ for all } M_0 \in \overline{M}_0 \} \),
- \(\overline{j}(A) := \overline{j}(1_A) \).

By Theorem 7.1 on page 103 of Floret [3] and by Proposition 10.7 and Corollaries 12.20 and 12.22 of Pfeffer [12] one obtains the following classical result.

5. Lemma. Let \(\langle J, j \rangle \) be a complete integration structure. Then \(J = \{ f \in \mathbb{R}^Y : j(f) = \overline{j}(f) \in \mathbb{R} \} \) and

\[
\begin{align*}
(\text{i}) & \quad \overline{j} \text{ is a complete and saturated measure on the } \sigma\text{-algebra } \mathcal{M}(\overline{j}); \\
(\text{ii}) & \quad \mathcal{M}(\overline{j}) = \{ A \subset Y : (\forall M_0 \in \mathcal{M}_0) A \cap M_0 \in \mathcal{M}_0 \}.
\end{align*}
\]
(iii) \(\mathcal{M}_0 \) is a \(\delta \)-ring and \(\mathcal{M}_0 = \{ A \in \mathcal{M}(j) : j(A) \in \mathbb{R} \} \);
(iv) \(j(f) = \int f \, dj \) for each \(\mathcal{M}(j) \)-measurable function \(f : Y \to [0, \infty] \);
(v) \(J = \{ f \in \mathbb{R}^Y : f \text{ is } j|\mathcal{M}(j) \text{-Lebesgue-integrable} \} \) and \(j(f) = \int f \, dj \) for all \(f \in J ; \)
(vi) \(0 \leq f \in J \) and \(0 < r \Rightarrow \{ f > r \} \in \mathcal{M}_0 \).

Proof of Theorem 3. \(\langle J, j \rangle = \langle \mathcal{L}(i), i^L \rangle \) is a complete integration according to Theorem 2. Hence \(\mathcal{L}(i) = \{ f \in \mathbb{R}^Y : i^L(f) = i^\tilde{L}(f) \in \mathbb{R} \} \) by Lemma 5. By Lemma 3 we have \(\tilde{j}(f) = \tilde{i}^L(f) = \tilde{7}(f) \) for \(f : Y \to [0, \infty] \), and hence \(\tilde{j}(A) = \tilde{i}^L(A) = \tilde{7}(A) \). Therefore we obtain (i)–(vi) of Theorem 3 from (i)–(vi) of Lemma 5. □

6. Lemma. Let \(e \in E \) with \(|e| \leq f \in \mathbb{R}^Y \) and \(\downarrow \tilde{j}(f) < \infty \) be given. Then \(\circ e \in \mathcal{L}(i) \) and \(i^L(\circ e) = \circ i(e) \).

Proof. As \(\downarrow \tilde{i}(|e|) \leq \downarrow \tilde{j}(f) < \infty \), it is easily seen that \(\circ i(|e|) \) is finite (otherwise \(\circ i(\frac{n|e|}{n(e|e|)}) = n \) and \(\frac{d(e|e|)}{d(e|e|)} \leq f \)). Hence \(\circ e \in \mathcal{L}(i) \) by Lemma 2. Now let w.l.o.g. \(e \geq 0 \). As \(i^L(\circ e) \leq \circ i(e) \) by Lemma 2, it remains to prove \(\circ i(e) \leq i^L(\circ e) \). To this aim let \(\varepsilon \in \mathbb{R}_+ \) be given. As \(|e| \leq f \in \mathbb{R}^Y \) we obtain \(|e - \circ e| \leq \varepsilon f \). Hence \(\downarrow \tilde{i}(|e - \circ e|) \leq \varepsilon \downarrow \tilde{j}(f) \), whence \(\downarrow \tilde{i}(|e - \circ e|) = 0 \). The assertion follows now, using Lemma 1 (v), from

\[\circ i(e) = \downarrow \tilde{i}(e) \leq \downarrow \tilde{i}(|e - \circ e| + \circ e) \leq \downarrow \tilde{i}(|e - \circ e|) + \downarrow \tilde{i}(\circ e) = \tilde{7}(\circ e) = i^L(\circ e). \]

△

7. Lemma. For \(Y_0 \subseteq Y \) we have

(i) \(\tilde{7}(Y_0) < \infty \Rightarrow i^L(M_0) = \tilde{7}(Y_0) \) for some \(M_0 \ni M_0 \ni Y_0 \);
(ii) \(\tilde{7}(Y_0) < \infty \Rightarrow i^L(M_0) = \tilde{7}(Y_0) \) for some \(M_0 \ni M_0 \ni Y_0 \);
(iii) \(M_0 \in M_0 \Rightarrow i^L(M_0) = \tilde{7}(M_0 \cap Y_0) + \tilde{7}(M_0 \setminus Y_0) \).

Proof. (i) By definition of \(\tilde{7}(Y_0) \) there exist

\[e_n \in \mathcal{L}(i), \quad 1_{Y_0} \leq e_n \leq 1, \quad e_n \downarrow \lim_{n \to \infty} \circ i(e_n). \]

According to Lemma 2 and Theorem 2 we have \(\circ e_n \in \mathcal{L}(i) \) and

\[\tilde{7}(Y_0) \geq \lim_{n \to \infty} i^L(\circ e_n) = i^L(\lim_{n \to \infty} \circ e_n) \]

Put \(M_0 := \{ \lim_{n \to \infty} \circ e_n = 1 \} \). Then \(Y_0 \subset M_0 \) according to (1) and \(\tilde{7}(Y_0) \geq \tilde{7}(\lim_{n \to \infty} \circ e_n) \geq \tilde{7}(M_0) \), and hence \(\tilde{7}(Y_0) = \tilde{7}(M_0) \). As \(f := \lim_{n \to \infty} \circ e_n \in \mathcal{L}(i) \) and \(0 \leq f \leq 1 \) we have \(\{ f = 1 \} = \bigcap_{n=2}^{\infty} \{ f > 1 - 1/n \} \in M_0 \) by Theorem 3 (vi) and (iii).

(ii) According to the definition of \(\tilde{j}(Y_0) \) there exist \(E \ni e_n \uparrow \) with \(0 \leq e_n \leq 1_{Y_0} \) and

\[\infty > \tilde{j}(Y_0) = \lim_{n \to \infty} \circ i(e_n) = \lim_{n \to \infty} i^L(\circ e_n) = i^L(\lim_{n \to \infty} \circ e_n), \]

where the last two equalities follow from Lemma 6 and Theorem 2. Put \(f_0 := \lim_{n \to \infty} \circ e_n \) and \(M_0 := \{ f_0 > 0 \} \). Then \(M_0 \subset Y_0 \) and \(f_0 \in \mathcal{L}(i) \). According to Theorem 3 (vi) we obtain that \(M_n := \{ f_0 > 1/n \} \in M_0 \). As \(M_n \uparrow M_0 \) and \(\sup i^L(1_{M_n}) = \sup \tilde{j}(M_n) \leq \tilde{j}(Y_0) < \infty \), we obtain \(M_0 \in M_0 \) by Theorem 2 (ii). The assertion follows now from

\[\tilde{j}(Y_0) = i^L(f_0) = \tilde{7}(f_0) \leq \tilde{7}(M_0) = i^L(M_0). \]
(iii) Using Lemma 1 we obtain the assertion by
\[i^L(M_0) = i(1_{M_0} \setminus Y_0) = i(M_0 \setminus Y_0) + i(1_{M_0} \setminus Y_0) \]
\[\leq i(M_0 \setminus Y_0) + i(-1_{M_0} \setminus Y_0) + i(M_0) \]
\[= i(M_0 \setminus Y_0) + i^L(M_0) - i(M_0 \setminus Y_0) \]
\[= i^L(M_0). \]

\[\square \]

8. Lemma. Let \(Y \supset Y_n \downarrow Y_0 \) and \(\dot{i}(Y) < \infty \). Then \(\dot{i}(Y_n) \downarrow \dot{i}(Y_0) \).

Proof. Put \(\alpha := \lim_{n \to \infty} \dot{i}(Y_n) \). Let \(\varepsilon \in \mathbb{R}_+ \). We have to show

\[(1) \quad \alpha - \varepsilon \leq \dot{i}(Y_0). \]

By definition of \(\dot{i} \) there exist \(0 \leq e_n \in \mathcal{E}^{fin} \) with \(e_n \leq 1_{Y_n} \) and \(\dot{i}(Y_n) \leq \omega_i(e_n) + \varepsilon/2^n \).

Let \(g_n := e_1 \wedge \ldots \wedge e_n \). Then

\[(2) \quad 0 \leq g_n \in \mathcal{E}^{fin}, \quad g_n \leq 1_{Y_n}, \quad g_n \downarrow, \]

\[(3) \quad \dot{i}(Y_n) \leq \omega_i(g_n) + \sum_{i=1}^{n} \varepsilon/2^i \] (which follows by induction).

Put \(C_n := \{ e \in \mathcal{E} : 0 \leq e \leq g_n \) and \(i(e) \geq \alpha - \varepsilon \}. \) Then \(\emptyset \neq C_n \downarrow \) . By saturation there exists \(e \in \bigcap_{n=1}^{\infty} C_n \). Hence \(0 \leq e \in \mathcal{E}^{fin}, \) \(i(e) \geq \alpha - \varepsilon \) and \(e \leq g_n \). Therefore \(e \leq 1_{Y_0} \) and hence (1) follows. \(\square \)

9. Lemma. Let \(\mathcal{C} \) be a system of internal sets with \(\dot{i}(C) = \infty \) for all \(C \in \mathcal{C} \). Assume that \(\mathcal{C} \) is downwards directed, has the finite intersection property and fulfills \(|C| \leq |S| \). Then \(\dot{i}(\bigcap_{C \in \mathcal{C}} C) = \infty \).

Proof. Put \(S^n_\mathcal{C} := \{ e \in \mathcal{E} : 0 \leq e \leq 1_C, \) \(i(e) \geq n \} \). Then \(\{ S^n_\mathcal{C} : C \in \mathcal{C}, n \in \mathbb{N} \} \) is a system of internal sets with finite intersection and cardinality \(\leq |S| \). Hence \(\bigcap_{n \in \mathbb{N}, C \in \mathcal{C}} S^n_\mathcal{C} \neq \emptyset \). Let \(e \in \bigcap_{n \in \mathbb{N}, C \in \mathcal{C}} S^n_\mathcal{C} \). Then \(e \in \mathcal{E} \) and \(e \leq 1_{\bigcap_{C \in \mathcal{C}} C} \) with \(i(e) \geq n \) for all \(n \in \mathbb{N} \). Hence for each \(n \in \mathbb{N} \) there exists \(e \in \mathcal{E}^{fin} \) with \(i(|e|) \geq n \) and \(e \leq 1_{\bigcap_{C \in \mathcal{C}} C} \). Hence \(\dot{i}(\bigcap_{C \in \mathcal{C}} C) = \infty \). \(\square \)

10. Lemma. Let \(Y_0 \subset Y \) with \(\dot{i}(Y_0) = \infty \) and \(c_0 := \sup \{ \dot{i}(T) : T \subset Y_0, \) \(\dot{i}(T) < \infty \} < \infty \). Then there exists an internal set \(C \subset Y_0 \) with \(\dot{i}(C) = \infty \).

Proof. As \(\dot{i}(Y_0) = \infty \), there exist \(0 \leq e_n \in \mathcal{E}^{fin} \) with \(e_n \leq 1_{Y_0} \) and \(\omega_i(e_n) \to \infty \).

Choose \(n_0 \) with \(c_0 < \omega_i(e_{n_0}) \) and put \(C := \{ e_{n_0} > 0 \} \). Then \(C \) is an internal subset of \(Y_0 \) and \(c_0 < \dot{i}(e_{n_0}) \leq \dot{i}(C) \). Hence \(\dot{i}(C) = \infty \) by definition of \(c_0 \). \(\square \)

11. Lemma. Let \(0 \leq f \in \mathbb{R}^Y \) and \(\dot{i}(\{ f \neq 0 \}) \). Then \(\dot{i}(f) = 0 \).

Proof. Let \(0 \leq e \leq f \) with \(e \in \mathcal{E}^{fin} \) be given. Then as \(e \) is internal there exists \(c \in \mathbb{R}_+ \) with \(e \leq c \). Hence \(e \leq c 1_{\{ f \neq 0 \}} \) and therefore \(\omega_i(e) = \dot{i}(e) \leq \dot{i}(c 1_{\{ f \neq 0 \}}) = 0 \). \(\square \)

12. Lemma. Let \(B \in \mathcal{M}(\dot{i}) \). Then \(B \in \mathcal{M}(\dot{i}) \) if the following condition is fulfilled:

\[A \text{ internal, } \dot{i}(A) = \infty \text{ and } \sup \{ \dot{i}(T) : T \subset A, \dot{i}(T) < \infty \} < \infty \]
\[\Rightarrow \dot{i}(A \cap B) = \infty \text{ or } \dot{i}(A \setminus B) = \infty. \]
Proof. We have to show that for $A \subset Y$

(1) $\hat{i}(A) \leq \hat{i}(A \cap B) + \hat{i}(A \setminus B)$.

If $\hat{i}(A) < \infty$, then by Lemma 7 (ii) there exists $M_0 \in M_0$ with $M_0 \subset A$ and $\hat{i}(A) = i^L(M_0)$. Then $M_0 \cap B, M_0 \cap B^c \in M_0$ by Theorem 3 (ii) and hence

$$\hat{i}(A) = i^L(M_0) = i^L(M_0 \cap B) + i^L(M_0 \setminus B) \leq \hat{i}(A \cap B) + \hat{i}(A \setminus B).$$

If $\infty = \hat{i}(A) = \sup \{\hat{i}(T) : T \subset A, \hat{i}(T) < \infty\}$, then we obtain as just proved

$$\hat{i}(T) \leq \hat{i}(T \cap B) + \hat{i}(T \setminus B)$$

for all T with $\hat{i}(T) < \infty$. Hence (1) follows. Now consider the remaining case, namely $\hat{i}(A) = \infty$ and $\sup \{\hat{i}(T) : T \subset A, \hat{i}(T) < \infty\} < \infty$. Then by Lemma 10 there exists an internal set A' with $A' \subset A$ and $\hat{i}(A') = \infty$. Hence we obtain $\hat{i}(A' \cap B) = \infty$ or $\hat{i}(A' \setminus B) = \infty$ by assumption. As $A' \subset A$, this implies (1). □

Let us remark that Lemma 12 yields a condition for $M(\hat{i}) = M(\hat{\gamma})$.

Proof of Theorem 4. (ii) It suffices to show $A \notin M(\hat{i}) \Rightarrow A \notin M(\hat{\gamma})$.

As $A \notin M(\hat{i})$, we obtain by Theorem 3 (ii) that there exists $M_0 \in M_0$ with $A \cap M_0 \notin M_0$. Now $\gamma(A \cap M_0) < \gamma(M_0) < \infty$ and hence $\hat{\gamma}(A \cap M_0) < \hat{\gamma}(A \cap M_0)$ by definition of M_0. Using Lemma 7 (iii) we obtain

$$\hat{\gamma}(M_0) = \gamma(M_0 \cap A) + \hat{\gamma}(M_0 \setminus A) > \gamma(M_0 \cap A) + \hat{i}(M_0 \setminus A);$$

hence $A \notin M(\hat{i})$.

(iii) Let $A \in M_0$. We have to prove (see Lemma 1 (iv)) that

(1) $\hat{i}(B) \leq \hat{i}(B \cap A) + \hat{i}(B \setminus A)$ for each $B \subset Y$.

If $\hat{i}(B) <\infty$, then by Lemma 7 (ii) there exists $M_0 \in M_0$ with $M_0 \subset B$ and $i^L(M_0) = \hat{i}(B)$. Hence

$$\hat{i}(B) = i^L(M_0) = i^L(M_0 \cap A) + i^L(M_0 \setminus A) \leq \hat{i}(B \cap A) + \hat{i}(B \setminus A),$$

i.e. (1) holds. Let $\hat{i}(B) = \infty$. According to Lemma 1 (v) we obtain $\hat{i}(B) \leq \hat{i}(B \cap A) + \hat{i}(B \setminus A) \leq i^L(A) + \hat{i}(B \setminus A)$; hence $\hat{i}(B \setminus A) = \infty$ and (1) holds.

(i) As $M(\hat{i})$ is an algebra, to prove that $M(\hat{i})$ is a σ-algebra, it is sufficient to show

(2) $A_\alpha \in M(\hat{i}) \cap A_n \upharpoonright A \Rightarrow A \in M(\hat{i})$.

As $A \in M(\hat{i})$ by (ii), it suffices to prove according to Lemma 12

$$B \text{ internal, } \hat{i}(B) = \infty \text{ and } \sup \{\hat{i}(T) : T \subset B, \hat{i}(T) < \infty\} < \infty$$

(3) $\Rightarrow \hat{i}(B \cap A) = \infty$ or $\hat{i}(B \setminus A) = \infty$.

Ad (3): Let w.l.o.g. $\hat{i}(B \setminus A) < \infty$. We inductively construct internal sets C_n with

(4) $C_n \subset B \cap A_n \cap A \cap \infty$.

Then $\hat{i}(\bigcap_{n=1}^\infty C_n) = \infty$ by Lemma 9 and hence $\hat{i}(B \cap A) = \hat{i}(\bigcap_{n=1}^\infty C_n) = \infty$, whence

(3) holds.

As $\hat{i}(B \setminus A_n) \leq \hat{i}(B \setminus A) < \infty$, we obtain from $A_n \in M(\hat{i})$

(5) $\hat{i}(B \cap A_n) = \infty$ for $n \in \mathbb{N}$.

According to Lemma 10 applied to $Y_0 := B \cap A_1$, there exists an internal set $C_1 \subset B \cap A_1$ with $\hat{i}(C_1) = \infty$. Assume inductively that C_1, \ldots, C_n are constructed
with $C_1 \supset \ldots \supset C_n, C_i \subset B \cap A_i$ and $\bar{\mu}(C_i) = \infty$ for $i = 1, \ldots, n$. As $A_{n+1} \in \mathcal{M}(\bar{\mu})$, we obtain

$$\infty = \bar{\mu}(C_n) = \bar{\mu}(C_n \cap A_{n+1}) + \bar{\mu}(C_n \setminus A_{n+1}),$$

which implies $\bar{\mu}(C_n \cap A_{n+1}) = \infty$ as $\bar{\mu}(C_n \setminus A_{n+1}) \leq \bar{\mu}(B \setminus A_{n+1}) \leq \bar{\mu}(B \setminus A) < \infty$.

According to Lemma 10 applied to $Y_0 := C_n \cap A_{n+1}$ we obtain an internal set $C_{n+1} \subset C_n \cap A_{n+1}$ with $\bar{\mu}(C_{n+1}) = \infty$. Hence (4) is proven by induction.

Now we prove that $\bar{\mu}$ is a measure on $\mathcal{M}(\bar{\mu})$. As $\bar{\mu}$ is additive on $\mathcal{M}(\bar{\mu})$, it suffices to show that

$$\mathcal{M}(\bar{\mu}) \ni A_n \uparrow A \Rightarrow \bar{\mu}(A_n) \to \bar{\mu}(A).$$

If $\bar{\mu}(A) < \infty$, then $\bar{\mu}(A \setminus A_n) \to 0$ by Lemma 8, and hence (6) holds.

Now let $\bar{\mu}(A) = \infty$ and assume indirectly that $\sup \bar{\mu}(A_n) := c_1 < \infty$. First, let $\sup \{\bar{\mu}(T) : T \subset A, \bar{\mu}(T) < \infty\} = \infty$. According to Lemma 7 (ii) there exists $M_0 \subset A$ with $i^L(M_0) > c_1$. As $A_n \in \mathcal{M}(\bar{\mu})$ by (ii), we obtain $M_0 \cap A_n \in \mathcal{M}(\bar{\mu})$ by Theorem 3 (ii). Hence we obtain the following contradiction:

$$c_1 < i^L(M_0) \leq \lim_{n \to \infty} i^L(M_0 \cap A_n) = \lim_{n \to \infty} \bar{\mu}(M_0 \cap A_n) \leq \lim_{n \to \infty} \bar{\mu}(A_n) \leq c_1.$$

Now let $\sup \{\bar{\mu}(T) : T \subset A, \bar{\mu}(T) < \infty\} < \infty$. We construct internal sets $C_n \subset A \setminus A_n$ with $C_n \downarrow$ and $\bar{\mu}(C_n) = \infty$. This yields a contradiction since $\bigcap_{n=1}^{\infty} C_n \subset \bigcap_{n=1}^{\infty} (A \setminus A_n) = \emptyset$ implies $C_n = \emptyset$ for some n.

As $\bar{\mu}(A \setminus A_1) = \infty$, we obtain by Lemma 10 an internal set $C_1 \subset A \setminus A_1$ with $\bar{\mu}(C_1) = \infty$. Now assume inductively that internal sets $C_n \subset C_{n-1} \subset \ldots \subset C_1$ with $C_j \subset A \setminus A_j$ and $\bar{\mu}(C_j) = \infty$ for $j = 1, \ldots, n$ are constructed. As $A \setminus A_{n+1} \in \mathcal{M}(\bar{\mu})$, we have

$$\infty = \bar{\mu}(C_n) = \bar{\mu}(C_n \cap (A \setminus A_{n+1})) + \bar{\mu}(C_n \setminus (A \setminus A_{n+1})).$$

Since $\bar{\mu}(C_n \setminus (A \setminus A_{n+1})) \leq \bar{\mu}(A_{n+1}) < \infty$, we obtain $\bar{\mu}(C_n \cap (A \setminus A_{n+1})) = \infty$. Hence by Lemma 10 there exists an internal set $C_{n+1} \subset C_n \cap (A \setminus A_{n+1})$ with $\bar{\mu}(C_{n+1}) = \infty$. Hence we have proven that $\bar{\mu}$ is a measure on $\mathcal{M}(\bar{\mu})$. The completeness of $\mathcal{M}(\bar{\mu})$ follows from the monotonicity of $\bar{\mu}$ and the definition of $\mathcal{M}(\bar{\mu})$.

(v) Now let $0 \leq f \in \mathcal{L}(i)$. Then according to Theorem 3 (vi) and (iii) we have for each $r > 0$

$$\{f > r\} \in \mathcal{M}_0 \subset \mathcal{M}(\bar{\mu}).$$

Hence f is $\mathcal{M}(\bar{\mu})$-measurable. It suffices to prove $i^L(f) = \int f \, d\bar{\mu}$. According to (7) there exist $f_n = \sum_{j=1}^{k_n} \alpha_{j,n} 1_{M_{j,n}}$ with $M_{j,n} \in \mathcal{M}_0$ and $f_n \uparrow f$. Hence according to Theorem 2 and the properties of the Lebesgue-integral

$$i^L(f) = \lim i^L(f_n) = \lim \sum_{j=1}^{k_n} \alpha_{j,n} \bar{\mu}(M_{j,n}) = \int f_n \, d\bar{\mu} = \int f \, d\bar{\mu}.$$

To prove (iv) we show at first that for each $\bar{\mu} \mathcal{M}(\bar{\mu})$-Lebesgue-integrable function $f \geq 0$ there exist $0 \leq f_0 \in \mathcal{L}(i)$ with

$$f_0 = f \, |\mathcal{M}(\bar{\mu})| \text{-a.e. and } i^L(f_0) = \int f \, d\bar{\mu}.$$

Choose $\mathcal{M}(\bar{\mu})$-elementary functions f_n with $0 \leq f_n \uparrow f$. Using Lemma 7 (ii) one can construct $g_n \in \mathcal{L}(i)$ with $0 \leq g_n \leq f_n$, $g_n \uparrow$ and $g_n = f_n \, |\mathcal{M}(\bar{\mu})| \text{-a.e.}$ Put $f_0 := \lim g_n \geq 0$. Using (v) and Theorem 2 it is easy to see that $0 \leq f_0 \in \mathcal{L}(i)$ fulfills (8).
(iv) Let $0 \leq f$ be $\mathcal{M}(\mathring{\nu})$-measurable. We first prove
\begin{equation}
\mathring{i}(f) \geq \int f \, d\mathring{\nu}.
\end{equation}
As $0 \leq f$ is $\mathcal{M}(\mathring{\nu})$-measurable, there exist $\mathcal{M}(\mathring{\nu})$-elementary functions
\begin{equation}f_n = \sum_{j=1}^{k_n} \alpha_{j,n} 1_{M_{j,n}} \uparrow f.
\end{equation}
Hence by Lemma 1 we obtain
\begin{equation}\mathring{i}(f) \geq \mathring{i}(f_n) \geq \sum_{j=1}^{k_n} \mathring{i}(\alpha_{j,n} 1_{M_{j,n}}) = \sum_{j=1}^{k_n} \alpha_{j,n} \mathring{i}(M_{j,n}) = \int f_n \, d\mathring{\nu} \uparrow \int f \, d\mathring{\nu},
\end{equation}
which shows (9). Because of (9) it suffices to show
\begin{equation}\mathring{i}(f) \leq \int f \, d\mathring{\nu} \text{ for } \int f \, d\mathring{\nu} < \infty.
\end{equation}
According to (8) there exists $0 \leq f_0 \in \mathcal{L}(\mathring{\nu})$ with
\begin{equation}f_0 = f \mathring{i}[\mathcal{M}(\mathring{\nu}) \text{-a.e. and } \mathring{i}^L(f_0) = \int f \, d\mathring{\nu}.
\end{equation}
To prove (10) it therefore suffices to show
\begin{equation}\mathring{i}(f) \leq \mathring{i}^L(f_0).
\end{equation}
We obtain from Lemma 1 (v)
\begin{equation}\mathring{i}(f) \leq \mathring{i}(|f - f_0|) + \mathring{\nu}(f_0) = \mathring{i}(|f - f_0|) + \mathring{i}^L(f_0).
\end{equation}
As $\mathring{i}(|f - f_0|) = 0$ by Lemma 11, we obtain (12). \hfill \box

Proof of Example 5. (i) follows from the monotonicity of ν on \mathcal{R} and the definition of $\mathring{\nu}$ and $\mathring{\nu}^e$.

(ii) We first show $\mathring{\nu}(A) \leq \mathring{i}_\nu(A)$. To prove this consider the following two cases:

(1) \quad $\nu(R)$ is finite for all $R \in \mathcal{R}$ with $R \subset A$;
(2) \quad there exists $R_0 \in \mathcal{R}$ with $R_0 \subset A$ and $\nu(R_0)$ infinite.

Ad (1): Let $R \in \mathcal{R}$, $R \subset A$ be given. Then $\mathcal{E}^{fin} \ni e := 1_R \leq 1_A$ and hence $\mathring{\nu}(R) = \mathring{i}_\nu(e) \leq \mathring{i}_\nu(1_A)$. Whence $\mathring{\nu}(A) \leq \mathring{i}_\nu(1_A) = \mathring{i}_\nu(A)$.

Ad (2): Let $\alpha \in \mathbb{R}_+$ and put $e := \frac{\alpha}{\nu(R_0)} 1_{R_0}$. Then $e \in \mathcal{E}^{fin}$, $\mathring{i}_\nu(e) = \alpha$ and $e \leq 1_A$. Hence $\mathring{i}_\nu(1_A) \geq \mathring{i}_\nu(e) = \alpha$. As $\alpha \in \mathbb{R}_+$ is arbitrary, we obtain $\mathring{i}_\nu(A) = \infty \geq \mathring{\nu}(A)$. It remains to prove $\mathring{i}_\nu(A) \leq \mathring{\nu}(A)$. Let $e \in \mathcal{E}^{fin}$ with $0 \leq e \leq 1_A$ be given. We have $e = \sum_{j=1}^{n} \alpha_j 1_{R_j}$ with disjoint $\emptyset \neq R_j \in \mathcal{R}$. Then $R := \bigcup_{\alpha_j > 0} R_j \subset \mathcal{R}$ and $R \subset A$. Furthermore $e \leq 1_R$ and hence
\begin{equation}0 \leq \mathring{i}_\nu(e) = \mathring{i}_\nu(1_R) \overset{(i)}{=} \mathring{\nu}(R) \leq \mathring{\nu}(A).
\end{equation}
Hence $\mathring{i}_\nu(A) \leq \mathring{i}_\nu(A) \leq \mathring{\nu}(A)$. This proves $\mathring{i}_\nu(A) = \mathring{i}_\nu(A)$.

The proof for $\mathring{\nu}(A) = \mathring{i}_\nu(A)$ runs similarly.

(iii) As $\mathcal{M}_0 = \{ A \subset Y : \mathring{i}_\nu(1_A) \leq \mathring{i}_\nu(1_A) < \infty \}$ by definition, we obtain (iii) by (ii).

(iv) As $\mathring{i}_\nu(A) = \mathring{i}_\nu(A), \mathring{\nu}(A) = \mathring{i}_\nu(A)$ for each $A \subset Y$, we obtain $\mathcal{M}(\mathring{\nu}) \subset \mathcal{M}(\mathring{\nu})$ by Theorem 4 (ii). Let $R \in \mathcal{R}$; it remains to show $R \in \mathcal{M}(\mathring{\nu})$. Let $A \subset Y$. As ν is a
content on \(\mathcal{R} \) we obtain from the definition of \(\nu \) that
\[
\nu(A) \leq \nu(A \cap R) + \nu(A \setminus R).
\]
Hence \(R \in \mathcal{M}(\nu) \).
(v) follows from Theorem 4 and Theorem 3 using (ii).

13. Lemma. Let \(0 \leq e \in \mathcal{E} \) and let \(0 \leq r \in \mathbb{R} \). Then there exists \(e_r \in \mathcal{E} \) with
\[
1_{\{e > r\}} \leq e_r \leq 1_{\{e \geq r\}}.
\]
Proof. Put \(e_r = 1 \wedge n(e - e \wedge r) \) with \(n \in \mathbb{N} \). Then \(e_r \in \mathcal{E} \) and \(e_r \) fulfills the above inequalities.

14. Lemma. Let \(B \subset Y \) be internal with \(\mathcal{I}(B) = \infty \). Then for every \(r \in [0,1] \) and \(e \in \mathcal{E} \) with \(0 \leq e \) we have
\[
\mathcal{I}(B \cap \{e \leq r\}) = \infty \quad \text{or} \quad \mathcal{I}(B \cap \{e \geq r\}) = \infty.
\]
Proof. As \(\mathcal{I}(B) = \infty \), there exists \(g_n \in \mathcal{E}_{fin} \) with
\[
(1) \quad 0 \leq g_n \leq 1_B, \quad 0^\circ(i(g_n)) \uparrow \infty.
\]
By Lemma 13 there exists \(e_r \in \mathcal{E} \) with
\[
(2) \quad 1_{\{e > r\}} \leq e_r \leq 1_{\{e \geq r\}}.
\]
From (1) and (2) we obtain
\[
(3) \quad g_n \wedge e_r \in \mathcal{E}_{fin}, \quad g_n \wedge e_r \leq 1_{B \cap \{e \geq r\}}.
\]
\[
(4) \quad \mathcal{E}_{fin} \ni g_n - g_n \wedge e_r \leq 1_{B \cap \{e \leq r\}}.
\]
As \(0^\circ(i(g_n)) = 0^\circ(i(g_n) \wedge e_r) + 0^\circ(i(g_n - g_n \wedge e_r)) \) and \(0^\circ(i(g_n)) \uparrow \infty \), there exists a subsequence with \(0^\circ(i(g_n) \wedge e_r) \to \infty \) or \(0^\circ(i(g_n - g_n \wedge e_r)) \to \infty \). Whence \(\mathcal{I}(B \cap \{e \leq r\}) = \infty \) or \(\mathcal{I}(B \cap \{e \geq r\}) = \infty \).

15. Lemma. (i) \(e \in \mathcal{E}_{fin} \Rightarrow 0^e \text{ is } \sigma(\mathcal{M}_0) \)-measurable.
(ii) \(e \in \mathcal{E} \Rightarrow 0^e \text{ is } \mathcal{M}(\mathcal{I}) \)-measurable.

Proof. Using that \(\mathcal{E} \) is a Stonian lattice we may assume in (i) and (ii) that \(0 \leq e \leq 1 \).

(i) According to Lemma 2 we have \(0^e \in \mathcal{L}(i) \). The assertion follows now from Theorem 3 (vi).

(ii) We first show that \(0^e \text{ is } \mathcal{M}(\mathcal{I}) \)-measurable. Let \(M_0 \in \mathcal{M}_0 \) be given. We prove
\[
(1) \quad 1_{M_0} \wedge 0^e \in \mathcal{L}(i).
\]
Let \(e \in \mathbb{R}_+ \) be given. There exists \(g \) with
\[
(2) \quad g \in \mathcal{E}_{fin}, \quad 1_{M_0} \leq g \leq 1 \quad \text{and} \quad i^L(0^g) \leq i^L(0^e) + \varepsilon.
\]
As \(0^e \wedge g \leq 1_{M_0} \wedge 0^e + 0^g - 1_{M_0} \), we obtain from Lemma 1 (v)
\[
\mathcal{I}(0^e \wedge g) \leq \mathcal{I}(1_{M_0} \wedge 0^e) + \mathcal{I}(0^g - 1_{M_0}).
\]
As \(0^e \wedge g, \ 0^g \in \mathcal{L}(i) \) by Lemma (2), we obtain from (2)
\[
\mathcal{I}(1_{M_0} \wedge 0^e) \leq \mathcal{I}(0^e \wedge g) \leq \mathcal{I}(1_{M_0} \wedge 0^e) + \varepsilon.
\]
This proves (1). Now let \(r > 0 \). Then by Theorem 3 (vi) we have \(\{0^e > r\} \cap M_0 = \{1_{M_0} \wedge 0^e > r\} \in \mathcal{M}_0 \). Hence we obtain by Theorem 3 (ii) that
\[
(3) \quad 0^e \text{ is } \mathcal{M}(\mathcal{I}) \)-measurable.
Now let $0 \leq r \in \mathbb{R}$ be given and put $B_r := \{ e \geq r \}$. Then $B_r \in \mathcal{M}(\mathcal{L})$ according to (3). To prove $B_r \in \mathcal{M}(\mathcal{L})$ we have to show according to Lemma 12:

\[
\begin{cases}
A \text{ internal}, \quad \hat{\mathcal{L}}(A) = \infty & \Rightarrow \hat{\mathcal{L}}(A \cap B_r) = \infty \quad \text{or} \quad \hat{\mathcal{L}}(A \setminus B_r) = \infty.
\end{cases}
\]

Define $r_0 := \sup\{ s \in [0, 1] : \hat{\mathcal{L}}(A \cap B_s) = \infty \} \in [0, 1]$. If $r < r_0$, then $\hat{\mathcal{L}}(A \cap B_r) = \infty$. If $r > r_0$, then $\hat{\mathcal{L}}(A \cap B_r) < \infty$ and hence using Lemma 14: $\hat{\mathcal{L}}(A \cap B_r) = \hat{\mathcal{L}}(A \cap \{ e < r \}) = \infty$. This proves (3) for $r \neq r_0$. It remains to prove (3) if $r = r_0$.

Let $T_n := A \cap \{ e > r_0 - 1/n \}$. Then T_n are internal with $T_n \downarrow$ and $\hat{\mathcal{L}}(T_n) = \infty$ by definition of r_0. Hence $\hat{\mathcal{L}}(\bigcap_{n=1}^{\infty} T_n) = \infty$ by Lemma 9. As $\bigcap_{n=1}^{\infty} T_n \subset A \cap \{ e \geq r_0 \}$, we obtain $\hat{\mathcal{L}}(A \cap B_{r_0}) = \infty$.

16. Lemma. If $0 \leq e \in \mathcal{E}$, then

(i) $\overline{i}(e) = \overline{i}(e) = \hat{\mathcal{L}}(e) = \hat{\mathcal{L}}(e)$;

(ii) $\overline{i}(e) = \overline{i}(e) = \overline{i}(e)$.

Proof. (i) If $e \in \mathcal{E}_{fin}$, then the assertion follows by definition of \overline{i} and $\hat{\mathcal{L}}$. If $e \notin \mathcal{E}_{fin}$, then $\overline{i}(e)$ is positive infinite. It suffices to prove $\overline{i}(e) = \infty$. Let $\alpha \in \mathbb{R}^+$ and put $e_{\alpha} = \frac{\alpha}{\overline{i}(e)}$. Then $\overline{i}(e_{\alpha}) = \alpha, e_{\alpha} \in \mathcal{E}_{fin}$ and $e_{\alpha} \leq e$. Hence $\overline{i}(e) \geq \alpha$ for all $\alpha \in \mathbb{R}^+$.

(ii) e is $\mathcal{L}(i)$-measurable by Lemma 15. As

\[
\overline{i}(e) = \int e \, d\overline{\mu} \quad \text{and} \quad \hat{\mathcal{L}}(e) = \sup_{n \to \infty} \int (e \wedge n) \, d\overline{\mu} = \lim_{n \to \infty} \overline{i}(e \wedge n),
\]

we may assume that $0 \leq e \leq 1$. According to Theorem 4 (iv) it suffices to show that $e \in \mathcal{L}(i)$ if e is $\mathcal{L}(\mathcal{L})$-Lebesgue-integrable. Therefore let $e \in \mathcal{L}(\mathcal{L})$-Lebesgue-integrable. We show $\{ e > r \} \in \mathcal{M}_0$ for each $r > 0$; by Lemma 13 there exists $0 \leq e_r \in \mathcal{E}$ with $1_{\{ e > r \}} \leq e_r \leq 1_{\{ e \geq r \}}$. Hence by (i)

\[
\overline{i}(\{ e > r \}) \leq \overline{i}(e_r) \leq \overline{i}(\{ e \geq r \}) < \infty.
\]

As $\{ e > r \} \in \mathcal{M}(\mathcal{L})$ by Lemma 15 (ii), we obtain that $\{ e > r \} \in \mathcal{M}_0$ by Theorem 3 (iii). As e is $\mathcal{M}(\mathcal{L})$-measurable, we obtain therefore for $k, n \in \mathbb{N}$ that $\{ k/2^n \leq e < (k+1)/2^n \} \in \mathcal{M}_0$ (use Theorem 3 (iii)). Hence $f_n := \sum_{k=1}^{2^n} \frac{k}{2^n} 1_{\{ \frac{k}{2^n} \leq e < \frac{k+1}{2^n} \}} \in \mathcal{L}(i)$ and $f_n \uparrow e$.

By Theorem 4 (v) we obtain

\[
\sup i^{c}(f_n) = \sup \int f_n \, d\overline{\mu} \leq \int e \, d\overline{\mu} < \infty.
\]

Hence Theorem 2 (ii) implies $e \in \mathcal{L}(i)$.

Proof of Theorem 6. We first prove (ii)–(iv) under the assumption that

(1) $0 \leq e \leq 1$ for all $e \in \mathcal{E}_1$.

(ii) Assume that w.l.o.g.

(2) $\alpha := \sup_{e \in \mathcal{E}_1} \overline{i}(e) < \infty$.

Let $\varepsilon \in \mathbb{R}^+$ be given. Define for $e \in \mathcal{E}_1, n \in \mathbb{N}$

\[
\mathcal{H}_e^n := \{ g \in \mathcal{E} : e_1(\{ e \geq 1/n \}) \leq g \leq 2, i(g) \leq \alpha + \varepsilon \}.
\]

Then \mathcal{H}_e^n are internal sets and we show that

\[
\bigcap_{i=1}^{k} \mathcal{H}_{e_i}^{n_i} \neq \emptyset \quad \text{for all} \quad e_i \in \mathcal{E}_1, n_i \in \mathbb{N} \quad \text{and} \quad k \in \mathbb{N}.
\]
To this aim let \(n := n_1 \lor \ldots \lor n_k \). As \(\mathcal{E}_1 \) is upwards directed, there exists \(\hat{c} \in \mathcal{E}_1 \) with \(e_1 \lor \ldots \lor e_k \leq \hat{c} \). Hence
\[
(4) \quad e_1 1_{\{e_1 \geq 1/n_1\}} \lor \ldots \lor e_k 1_{\{e_k \geq 1/n_k\}} \leq \hat{c} 1_{\{\hat{c} \geq 1/n\}}.
\]
As \(\hat{c} \in \mathcal{E}_1 \), we have \(\bar{\mathcal{I}}(\hat{c}) \leq \alpha \) by (2). Hence there exist \(1 \geq g_1 \in \mathcal{E}^{fin} \) and \(1 \geq \delta \in \mathbb{R}_+ \) such that
\[
(5) \quad \hat{c} \leq g_1 \text{ with } (1+\delta) i(g_1) \leq \alpha + \varepsilon.
\]
Then
\[
(6) \quad \hat{c} 1_{\{\hat{c} \geq 1/n\}} \leq (1+\delta)g_1 =: g \leq 2.
\]
Then \(2 \geq g \in \mathcal{E} \) and \(i(g) \leq \alpha + \varepsilon \) according to (5) and hence \(g \in \bigcap_{n=1}^k \mathcal{H}_{e_i}^n \) by (4) and (6). This proves (3). By compactness there exists \(\tilde{c} \in \bigcap_{e \in \mathcal{E}_1, n \in \mathbb{N}} \mathcal{H}_{e}^n \). Then by Lemma 2
\[
(7) \quad i^L(\hat{c}) \leq \hat{c} \leq \alpha + \varepsilon,
\]
\[
(8) \quad e 1_{\{e \geq 1/n\}} \leq \tilde{c} \text{ for all } e \in \mathcal{E}_1, n \in \mathbb{N}.
\]
This implies \(\hat{c} \leq \hat{c} \tilde{c} \) for all \(e \in \mathcal{E}_1 \). Hence \(\sup_{e \in \mathcal{E}_1} \hat{c} \\ \leq \hat{c} \tilde{c} \) \(\sup_{e \in \mathcal{E}_1} \hat{c} \) and (7) implies
\[
\bar{\mathcal{I}}(\sup_{e \in \mathcal{E}_1} \hat{c}) \leq \bar{\mathcal{I}}(\hat{c}) = i^L(\hat{c}) \leq \alpha + \varepsilon.
\]
As \(\varepsilon \in \mathbb{R}_+ \) was arbitrary, we obtain (ii) under assumption (1).

(iii) follows using Lemma 16 (ii) from
\[
\sup_{e \in \mathcal{E}_1} \bar{\mathcal{I}}(\hat{c} e) \leq \bar{\mathcal{I}}(\sup_{e \in \mathcal{E}_1} \hat{c} e) \leq \bar{\mathcal{I}}(\sup_{e \in \mathcal{E}_1} \hat{c} e) \leq \sup_{e \in \mathcal{E}_1} \bar{\mathcal{I}}(\hat{c} e) = \sup_{e \in \mathcal{E}_1} \bar{\mathcal{I}}(\hat{c} e).
\]

(iv) follows from (ii) and (iii) using Lemma 16 (ii).

Now we prove (i). Here we may assume w.l.o.g. that \(\mathcal{E}_1 \) is upwards directed and (1) holds. Put \(f := \sup_{e \in \mathcal{E}_1} \hat{c} e \). We first show that \(f \) is \(\mathcal{M}(\tilde{\mathcal{I}}) \)-measurable. To this aim choose \(M_0 \in \mathcal{M}_0 \). We show that
\[
(9) \quad 1_{M_0} \wedge f \in \mathcal{L}(i).
\]
Then for \(0 < r \) we have according to Theorem 3 (vi)
\[
\{f > r\} \cap M_0 = \{1_{M_0} \wedge f > r\} \in \mathcal{M}_0.
\]
Hence \(f \) is \(\mathcal{M}(\tilde{\mathcal{I}}) \)-measurable according to Theorem 3 (ii).

To prove (9) let \(\varepsilon \in \mathbb{R}_+ \) be given. Choose \(h \) with
\[
(10) \quad h \in \mathcal{E}^{fin}, 1_{M_0} \leq h \leq 1, \quad i^L(\hat{c} h) \leq \hat{c} i(h) \leq i^L(M_0) + \varepsilon.
\]
Then for \(e \in \mathcal{E}_1 \)
\[
(11) \quad \hat{c} (e \wedge h) \leq 1_{M_0} \wedge \hat{c} e + \hat{c} h - 1_{M_0}.
\]
Hence according to (iv) and Lemma 1 (v) we have
\[
\bar{\mathcal{I}}(1_{M_0} \wedge f) \leq \bar{\mathcal{I}}(\sup_{e \in \mathcal{E}_1} \hat{c} (e \wedge h)) = \bar{\mathcal{I}}(\sup_{e \in \mathcal{E}_1} \hat{c} e) \leq \bar{\mathcal{I}}(1_{M_0} \wedge f) + \bar{\mathcal{I}}(\hat{c} h - 1_{M_0}) \leq \bar{\mathcal{I}}(1_{M_0} \wedge f) + \varepsilon.
\]
This proves (9). Now we prove that
\[
(12) \quad f \text{ is } \mathcal{M}(\tilde{\mathcal{I}}) \text{-measurable}.
\]
Let \(r > 0 \). Then \(\{ f > r \} \in \mathcal{M}(\mathfrak{i}) \) as just proven. To prove \(\{ f > r \} \in \mathcal{M}(\mathfrak{i}) \) it remains according to Lemma 12 to show:

(13) \(A \) internal \(\ell \mathfrak{i}(A) = \infty \Rightarrow \ell \mathfrak{i}(A \cap \{ f > r \}) = \infty \) or \(\ell \mathfrak{i}(A \cap \{ f \leq r \}) = \infty \).

Assume \(\ell \mathfrak{i}(A \cap \{ f > r \}) < \infty \). Then \(\ell \mathfrak{i}(A \cap \{ e > r \}) < \infty \) for all \(e \in \mathcal{E}_1 \). As \(e \) is \(\mathcal{M}(\mathfrak{i}) \)-measurable according to Lemma 15 (ii), we have

(14) \(\ell \mathfrak{i}(A \cap \{ e \leq r \}) = \infty \).

As \(A \cap \{ e \leq r \} \subset A \cap \{ e \leq r + 1/n \} \) for each \(n \in \mathbb{N} \), we obtain from (14)

(15) \(\ell \mathfrak{i}(A \cap \{ e \leq r + 1/n \}) = \infty \).

As \(C := \{ A \in \mathcal{E}_1, n \in \mathbb{N} \} \) is a system of internal sets with the finite intersection property and \(|C| \leq |\mathcal{S}| \), we have

(16) \(\ell \mathfrak{i}(A \cap \bigcap_{e \in \mathcal{E}_1, n \in \mathbb{N}} \{ e \leq r + 1/n \}) = \infty \)

by Lemma 9. Now \(\ell \mathfrak{i}(A \cap \{ f \leq r \}) = \infty \) follows from \(A \cap \bigcap_{e \in \mathcal{E}_1, n \in \mathbb{N}} \{ e \leq r + 1/n \} = A \cap \{ f \leq r \} \) and (16), i.e. (13) is proven.

It remains to prove (ii)--(iv) without the assumption (1). It is clear that (ii)--(iv) follows under the assumption

\[
0 \leq e \leq n \quad \text{for all} \quad e \in \mathcal{E}_1.
\]

Hence (ii) follows using (i) from

\[
\sup_{g \in \mathcal{E}_1} \ell(\circ g) = \sup_{g \in \mathcal{E}_1} \int_\mathcal{E}_1 \circ g \, d\mathfrak{i} = \sup_{n \in \mathbb{N}} \sup_{g \in \mathcal{E}_1} \int_\mathcal{E}_1 \circ (g \wedge n)
\]

\[
= \sup_{n \in \mathbb{N}} \int_\mathcal{E}_1 (\sup_{n \in \mathbb{N}} \circ n) \, d\mathfrak{i}_\ell = \sup_{n \in \mathbb{N}} \sup_{g \in \mathcal{E}_1} \int_\mathcal{E}_1 \circ (\sup_{n \in \mathbb{N}} g).
\]

(iii) follows similarly. (iv) follows from (ii) and (iii) using Lemma 16 (ii). \(\square \)

17. **Lemma.** Let \(f_1, f_2 : Y \to [0, \infty[\) be \(\mathcal{M}(\mathfrak{i}) \)-measurable and \(Y_0 \subset Y \). Then

\[
\ell(f_11_{Y_0} + f_21_{Y_0}) = \ell(f_11_{Y_0}) + \ell(f_21_{Y_0}).
\]

Proof. According to Lemma 1 (vii) we may assume that \(f_1, f_2 \) are bounded. According to Lemma 1 (iv) it suffices to prove

(1) \(\ell(f_11_{Y_0} + f_21_{Y_0}) \geq \ell(f_11_{Y_0}) + \ell(f_21_{Y_0}) \);

assume w.l.o.g. that \(\ell(f_11_{Y_0} + f_21_{Y_0}) < \infty \). To prove (1) let \(e \in \mathcal{E}^{fin} \) with

(2) \(e \geq f_11_{Y_0} + f_21_{Y_0}, \) \(e \) bounded,

be chosen. According to Lemma 2, \(\circ e \in \mathcal{L}(i) \) and hence \(f_1 \wedge \circ e, \circ e - f_1 \wedge \circ e \) are \(\mathcal{M}(\mathfrak{i}) \)-measurable. Therefore \(f_1 \wedge \circ e, \circ e - f_1 \wedge \circ e \in \mathcal{L}(i) \) (use Theorem 3 (v)). Hence using (2)

\[
i^L(\circ e) = i^L(f_1 \wedge \circ e) + i^L(\circ e - f_1 \wedge \circ e) \geq \ell(f_11_{Y_0}) + \ell(f_21_{Y_0}).
\]

Since \(i^L(\circ e) \leq \circ i(e) \) by Lemma 2, we obtain (1). \(\square \)

18. **Lemma.** Let \(f_n : Y \to [0, \infty[\) be \(\mathcal{M}(\mathfrak{i}) \)-measurable and \(Y_0 \subset Y \). Then

(i) \(\ell(f_11_{Y_0} + f_21_{Y_0}) < \infty \Rightarrow \ell(f_11_{Y_0} + f_21_{Y_0}) = \ell(f_11_{Y_0}) + \ell(f_21_{Y_0}) \);
(ii) \(f_n \uparrow f \in \mathbb{R}_+ \wedge \ell(f_11_{Y_0}) < \infty \Rightarrow \ell(f_n1_{Y_0}) \uparrow \ell(f11_{Y_0}) \).

Proof.
Proof. (i) According to Lemma 1 (iv) it suffices to prove
\[(f_1 1_{Y_0} + f_2 1_{Y_0}) \leq \tilde{1}(f_1 1_{Y_0}) + \tilde{1}(f_2 1_{Y_0}). \]
Let \(e \in \mathcal{E}^{fin} \) with
\[0 \leq e \leq f_1 1_{Y_0} + f_2 1_{Y_0} \]
be given. Then we have
\[\circ e \leq f_1 \land \circ e + f_2 \land \circ e, \quad f_1 \land \circ e \leq f_1 1_{Y_0}, \quad f_2 \land \circ e \leq f_2 1_{Y_0}. \]
Hence
\[\tilde{1}(\circ e) \leq \tilde{1}(f_1 \land \circ e) + \tilde{1}(f_2 \land \circ e) \leq \tilde{1}(f_1 1_{Y_0}) + \tilde{1}(f_2 1_{Y_0}). \]
As \(\tilde{1}(f_1 1_{Y_0} + f_2 1_{Y_0}) < \infty \), we obtain from (2) and Lemma 6 that \(\tilde{1}(\circ e) = \circ i(e) \). This implies (1).

(ii) We have to prove
\[\lim_{n \to \infty} \tilde{1}(f_n 1_{Y_0}) \geq \tilde{1}(f 1_{Y_0}). \]
Choose \(e_n \in \mathcal{E}^{fin} \) with
\[e_n \leq e_{n+1}, \quad e_n \leq f 1_{Y_0}, \quad \circ i(e_n) \uparrow \circ i(f 1_{Y_0}). \]
As \(\tilde{1}(f 1_{Y_0}) < \infty \), we obtain by Lemma 6 that \(\circ i(e_n) = \tilde{1}(\circ e_n) \) and hence
\[
\tilde{1}(f 1_{Y_0}) = \lim_{n \to \infty} \circ i(e_n) = \lim_{n \to \infty} \tilde{1}(\circ e_n) = \tilde{1}(\lim_{n \to \infty} \circ e_n)
\]
\[= \tilde{1}(\lim_{n \to \infty} (\circ e_n \land f_n)) = \lim_{n \to \infty} \tilde{1}(\circ e_n \land f_n) \leq \lim_{n \to \infty} \tilde{1}(f_n 1_{Y_0}). \]
\(\square \)

Proof of Theorem 7. \(\bar{1}\mathcal{M}(\bar{1}) \cap Y_0 \) is a measure according to Lemma 17 and Lemma 1 (vii). \(\bar{1}(f 1_{Y_0}) = \int f |Y_0 \, d\bar{1}|Y_0 \) follows for \(\mathcal{M}(\bar{1}) \)-elementary functions by Lemma 17 and Lemma 1 (ii). The general case follows then from Lemma 1 (vii).

It remains to prove
\[(1) \quad \bar{1}\mathcal{M}(\bar{1}) \cap Y_0 \text{ is a measure,} \]
\[(2) \quad \bar{1}(f 1_{Y_0}) = \int f |Y_0 \, d\bar{1}|Y_0. \]

Ad(1): Let \(M_1 \cap Y_0 \) and \(M_2 \cap Y_0 \) be disjoint with \(M_1, M_2 \in \mathcal{M}(\bar{1}) \). If
\[\bar{1}(M_1 \cap Y_0) \cup (M_2 \cap Y_0) < \infty, \]
then
\[\bar{1}(M_1 \cap Y_0) \cup (M_2 \cap Y_0) = \bar{1}(M_1 \cap Y_0) + \bar{1}(M_2 \cap Y_0) \]
by Lemma 18 (i). To prove that \(\bar{1}\mathcal{M}(\bar{1}) \cap Y_0 \) is additive it suffices therefore to show
\[(3) \quad \bar{1}(M_1 \cap Y_0) < \infty, \quad \bar{1}(M_2 \cap Y_0) < \infty \Rightarrow \bar{1}(M_1 \cap Y_0 \cup M_2 \cap Y_0) < \infty. \]
As \(M_1 \in \mathcal{M}(\bar{1}) \) we have with \(A := Y_0 \cap (M_1 \cup M_2) : \)
\[\bar{1}(A) = \bar{1}(A \cap M_1) + \bar{1}(A \setminus M_1) \leq \bar{1}(Y_0 \cap M_1) + \bar{1}(Y_0 \cap M_2) < \infty, \]
i.e. (3) holds.

Now let \(\mathcal{M}(\bar{1}) \ni M_n \uparrow M_\infty \) be given. To prove (1), it suffices to show
\[(4) \quad \bar{1}(M_n \cap Y_0) \uparrow \bar{1}(M_\infty \cap Y_0). \]
If \(\bar{1}(M_\infty \cap Y_0) < \infty \), we obtain (4) from Lemma 18 (ii). Therefore, let \(\bar{1}(M_\infty \cap Y_0) = \infty \) and assume indirectly that
\[(5) \quad \lim_{n \to \infty} \bar{1}(M_n \cap Y_0) \leq c_1 \text{ for some } c_1 \in \mathbb{R}. \]
We consider the following two cases:

(6) \[\sup \{ \mathcal{H}(T) : T \subset M_\infty \cap Y_0, \mathcal{H}(T) < \infty \} = \infty, \]
(7) \[\sup \{ \mathcal{H}(T) : T \subset M_\infty \cap Y_0, \mathcal{H}(T) < \infty \} < \infty. \]

Assume that (6) holds. Hence according to Lemma 7 (ii) we obtain
\[\sup \{ \mathcal{H}(M_0) : M_0 \subset M_\infty \cap Y_0, M_0 \in \mathcal{M}_0 \} = \infty. \]

Choose \(M_0 \in \mathcal{M}_0 \) with \(M_0 \subset M_\infty \cap Y_0 \) and \(\mathcal{H}(M_0) > c_1 \). As \(M_0 \cap M_n \in \mathcal{M}_0 \) and \(M_0 \cap M \uparrow M_\infty \), we obtain the following contradiction:
\[c_1 < \mathcal{H}(M_0) = \lim_{n \to \infty} \mathcal{H}(M_0 \cap M_n) = \lim_{n \to \infty} \mathcal{H}(Y_0 \cap M_n) \leq \lim_{n \to \infty} \mathcal{H}(Y_0 \cap M_n) \leq c_1. \]

Assume that (7) holds. We construct sets \(C_n \) with
\[\begin{cases} C_n \text{ internal,} & C_n \subset M_\infty \cap Y_0 \setminus M_n \cap Y_0, \\ C_n \downarrow & \mathcal{H}(C_n) = \infty. \end{cases} \]

Since \(C_n \) by (8) are internal with \(\bigcap_{n=1}^\infty C_n = \emptyset \), we obtain \(C_n = \emptyset \) for some \(n \in \mathbb{N} \), contradicting \(\mathcal{H}(C_n) = \infty \). Thus it remains to construct \(C_n \) fulfilling (8). As \(\mathcal{H}(M_\infty \cap Y_0 \setminus M_1 \cap Y_0) = \infty \) we obtain an internal set \(C_1 \subset M_\infty \cap Y_0 \setminus M_1 \cap Y_0 \) with \(\mathcal{H}(C_1) = \infty \) by Lemma 10. Now assume inductively that internal sets \(C_1 \supset \ldots \supset C_n \)
with \(C_j \subset M_\infty \cap Y_0 \setminus M_j \cap Y_0 \) and \(\mathcal{H}(C_j) = \infty \) are constructed. As \(M_\infty \setminus M_{n+1} \in \mathcal{M}(\mathcal{H}) \)
we have
\[\infty = \mathcal{H}(C_n) = \mathcal{H}(C_n \cap Y_0) = \mathcal{H}(C_n \cap Y_0 \cap (M_\infty \setminus M_{n+1})) + \mathcal{H}((C_n \cap Y_0) \setminus (M_\infty \setminus M_{n+1})). \]

Since
\[\mathcal{H}(C_n \cap Y_0 \setminus (M_\infty \setminus M_{n+1})) \leq \mathcal{H}(M_{n+1} \cap Y_0) < \infty, \]
we obtain \(\mathcal{H}((C_n \cap Y_0) \cap (M_\infty \setminus M_{n+1})) = \infty \). Hence by Lemma 10 there exists an internal set \(C_{n+1} \subset (C_n \cap Y_0) \cap (M_\infty \setminus M_{n+1}) \) with \(\mathcal{H}(C_{n+1}) = \infty \). This proves (8) for \(n+1 \). Hence (1) is proven.

Ad(2): If \(f = 1_M \) with \(M \in \mathcal{M}(\mathcal{H}) \), then (2) follows by definition of \(\mathcal{H}\lvert_{Y_0} \). Now let \(0 \leq f \) be elementary. Then \(f = \sum_{j=1}^n \alpha_j 1_{M_j} \) with disjoint \(M_j \in \mathcal{M}(\mathcal{H}) \) and \(\alpha_j > 0 \) given. If \(\mathcal{H}(f 1_{Y_0}) < \infty \), then (2) follows from Lemma 18 (i) and Lemma 1 (ii). Now let \(\mathcal{H}(f 1_{Y_0}) = \infty \) and \(\alpha := \max_{j=1}^n \alpha_j \). Then \(\mathcal{H}(\alpha 1_{\sum_{j=1}^n M_j \cap Y_0}) = \infty \) and hence \(\mathcal{H}(\sum_{j=1}^n M_j \cap Y_0) = \infty \). Hence by (1) there exists \(j_0 \) with \(\mathcal{H}(M_{j_0} \cap Y_0) = \infty \). Therefore \(\infty = \sum_{j=1}^n \alpha_j \mathcal{H}(M_j \cap Y_0) = \int f(t)\ l_\mathcal{H}(Y_0) \). This proves (2) for \(\mathcal{M}(\mathcal{H}) \)-elementary functions. Using Lemma 18 (ii) we obtain (2) for \(\mathcal{M}(\mathcal{H}) \)-measurable functions \(f \geq 0 \) if \(\mathcal{H}(f 1_{Y_0}) < \infty \).

Now consider the case \(\mathcal{H}(f 1_{Y_0}) = \infty \). We first show
\[\mathcal{H}([f \wedge n]1_{Y_0}) \uparrow \infty. \]
Assume indirectly that
\[c := \sup \mathcal{H}([f \wedge n]1_{Y_0}) < \infty. \]
Let \(e \leq f 1_{Y_0} \) with \(e \in \mathcal{E}^{fin} \) given. Then there exists \(n \in \mathbb{N} \) with \(e \leq n \) as \(e \) is internal. Hence
\[e \leq [f \wedge n]1_{Y_0}. \]
Hence by (2), (1) and Theorem 6 (iii) we have
\[c := \int f_{1Y_0} d\bar{\mu}_{1Y_0} < \infty. \]

Then
\[c = \sum_{n=1}^{\infty} \int f_{1Y_0} d\bar{\mu}_{1Y_0} < \infty. \]

Now we have by (12)
\[\bar{\mu}(\{\frac{1}{n+1} < f \leq \frac{1}{n}\} \cap Y_0) \leq (n+1) \int f_{1Y_0} d\bar{\mu}_{1Y_0} < \infty. \]

Hence according to Lemma 7 (ii) there exists \(M_n \in \mathcal{M}_0 \) with \(M_n \subset \{\frac{1}{n+1} < f \leq \frac{1}{n}\} \cap Y_0 \) and \(\bar{\mu}(M_n) = \bar{\mu}(\{\frac{1}{n+1} < f \leq \frac{1}{n}\} \cap Y_0) < \infty \). Therefore according to (1)
\[\bar{\mu}_{1Y_0}(\{\frac{1}{n+1} < f \leq \frac{1}{n}\} \cap Y_0 - M_n) = 0. \]

Put \(M_\infty := \bigcup_{n=1}^{\infty} M_n \); then from (1) and (13) we obtain
\[\bar{\mu}_{1Y_0}(\{f > 0\} \cap Y_0 \setminus M_\infty) = 0. \]

Hence
\[\bar{\mu}(f_{1Y_0}1_{\{f > 0\}} - f_{1M_\infty}) \leq 1 \cdot \bar{\mu}(Y_0 \cap \{f > 0\} - M_\infty) = 0. \]

From (15), Lemma 1 (v), Lemma 1 (vii) and (12) we obtain
\[\bar{\mu}(f_{1Y_0}) = \bar{\mu}(f_{1Y_0} - f_{1M_\infty} + f_{1M_\infty}) \leq \bar{\mu}(f_{1Y_0} - f_{1M_\infty}) + \bar{\mu}(f_{1M_\infty}) \]
\[= \lim_{n \to \infty} \bar{\mu}(f_{1 \cup_{i=1}^{n} M_i}) = \lim_{n \to \infty} \bar{\mu}(f_{1 \cup_{i=1}^{n} M_i}) \]
\[= \lim_{n \to \infty} \int f_{1 \cup_{i=1}^{n} M_i} d\bar{\mu}_{1Y_0} \leq \int f_{1Y_0} d\bar{\mu}_{1Y_0} < \infty. \]

This contradicts our assumption \(\bar{\mu}(f_{1Y_0}) = \infty \).

Proof of Theorem 8. (i) It suffices to prove
\[\alpha := \bar{\mu}(\sup_{e \in \mathcal{E}_1} \circ e 1_{Y_0}) \leq \sup_{e \in \mathcal{E}_1} \bar{\mu}(\circ e 1_{Y_0}). \]

By Theorem 7 (ii) we may assume that \(0 \leq e \leq 1 \) for \(e \in \mathcal{E}_1 \). Now let \(\varepsilon \in \mathbb{R}_+ \) be given. As \(\alpha \) is finite, there exists \(g \in \mathcal{E}^{fin} \) with
\[g \leq (\sup_{e \in \mathcal{E}_1} \circ e) 1_{Y_0}, \]
\[i^L(\circ e) = \circ i(g) \geq \alpha - \varepsilon. \]

Hence by (2), (1) and Theorem 6 (iii) we have
\[\alpha - \varepsilon \leq \bar{\mu}(\circ g) = \bar{\mu}(\circ g \wedge \sup_{e \in \mathcal{E}_1} \circ e) \leq \sup_{e \in \mathcal{E}_1} \bar{\mu}(\circ (g \wedge e)). \]

As \(\varepsilon \in \mathbb{R}_+ \) was arbitrary, we obtain the assertion.
(ii) It suffices to show

\[\beta := \overline{\lambda}(\sup_{e \in E_1} e \uparrow 1_{Y_0}) \leq \sup_{e \in E_1} \overline{\lambda}(e \uparrow 1_{Y_0}). \]

According to Theorem 7 (iii) we may assume that \(0 \leq e \leq 1 \) for \(e \in E_1 \). As \(\beta \) is finite, there exists \(g \) with

\[g \in E^\text{fin}, \sup_{e \in E_1} e \cdot 1_{Y_0} \leq g \leq 1. \]

Then

\[\sup_{e \in E_1} e \wedge g = \sup_{e \in E_1} (e \wedge g) \in \mathcal{L}(i) \]

according to Theorem 6 (iv). Then according to Theorem 6 there exists a sequence \(e_n \in E_1 \) with \(e_n \wedge g \leq e_{n+1} \wedge g \) and

\[\lim_{n \to \infty} (\overline{\lambda}(e_n \wedge g)) = \overline{\lambda}(\sup_{n \in \mathbb{N}} (e_n \wedge g)). \]

Hence \(\sup_{n \in \mathbb{N}} (e \wedge g) = \sup_{e \in E_1} (e_n \wedge g) \) \(\overline{\sigma} \)-a.e., and this implies according to Theorem 7 (iii)

\[\overline{\lambda}(\sup_{e \in E_1} e \uparrow 1_{Y_0}) = \overline{\lambda}(\sup_{e \in E_1} (e \wedge g) \uparrow 1_{Y_0}) = \lim_{n \to \infty} \overline{\lambda}(e_n \wedge g \uparrow 1_{Y_0}) \leq \sup_{e \in E_1} \overline{\lambda}(e \uparrow 1_{Y_0}). \]

\[\square \]

19. Example. We show that in Theorem 8 (ii) the assumption \(\overline{\lambda}(\sup_{e \in E_1} e \uparrow 1_{Y_0}) < \infty \) cannot be dispensed with:

To this aim we construct an internal content \(\nu : \mathcal{R} \to \ast [0, \infty[\) on a ring \(\mathcal{R} \subset P(Y) \) and choose \(E \) and \(i = i_\nu \) according to Example 5. We furthermore construct \(D \subset \mathcal{R} \) with cardinality of \(D \) smaller than or equal to \(\mathcal{S}_\nu \), \(D \uparrow \) and \(Y_0 \subset Y \) such that

\[\nu(D \cap Y_0) = 0 \text{ for } D \in D, \quad \nu(\bigcup_{D \in D} D \cap Y_0) = \infty. \]

Choosing \(E_1 := \{ 1_D : D \in D \} \) we obtain

\[\infty = \overline{\lambda}(\sup_{e \in E_1} e \uparrow 1_{Y_0}) \neq \sup_{e \in E_1} \overline{\lambda}(e \uparrow 1_{Y_0}) = 0. \]

Let \(Y := \ast \mathbb{R} \times \ast \mathbb{R} \) and denote by \(\lambda \) the Lebesgue-measure on the Borel-\(\sigma \)-algebra \(\mathcal{B} \) and by \(Z \) the counting measure on \(\mathcal{B} \). Then

\[\mu(B) := \int \lambda(B_x)Z(dx) \text{ for } B \in \mathcal{B} \times \mathcal{B} \]

defines a measure on \(\mathcal{B} \times \mathcal{B} \). Consider

\[\mathcal{R} = \ast \{ \bigcup_{x \in E} \{ x \} \times B : E \subset \mathbb{R} \text{ finite and } B \in \mathcal{B} \text{ bounded} \}. \]

Then \(\nu = \ast \mu|\mathcal{R} \) is an internal content on a ring with values in \(\ast [0, \infty[\). Put \(D = \{ \bigcup_{x \in E} \{ x \} \times [-n, n] : E \subset \mathbb{R} \text{ finite}, n \in \mathbb{N} \} \). Then \(D \uparrow \) and the cardinality of \(D \subset \mathcal{R} \) is smaller than or equal to \(\mathcal{S}_\nu \). Put

\[Y_0 := \{(x, y) \in \mathbb{R} \times \ast \mathbb{R} : y \approx x \}. \]
We consider a set function ν.

(i) Let ν.

Example. E.

Thus for each finite ν.

Therefore according to (4) $\nu(Y_0) = \infty$.

Ad (1): We have $(x, y) : x \approx y \in *\mathbb{R}$ for all $x \in \mathbb{R}$.

Hence there exists $n \in \mathbb{N}$ such that

$I_0 = \{x \in \mathbb{R} : n_x = n_0\}$ is uncountable.

Therefore according to (4)

$\bigcup_{x \in I_0} \{x\} \times [x - \frac{1}{n_x}, x + \frac{1}{n_x}] \subset B$.

Thus for each finite $E \subset I_0$ we have

$\nu(B) \geq \sum_{x \in k} \nu(\{x\} \times [x - 1/n_0, x + 1/n_0]) = |E| \frac{2}{n_0}$.

As this holds for each finite $E \subset I_0$, we obtain (3).

The following example shows that the results of Theorem 4 cannot be improved.

We consider a set function ν as in Example 5.

20. Example. (i) Let $Y := \{1, 2, 3\}$. Put $\mathcal{R} := \{\emptyset, \{1, 2\}, \{3\}, Y\}$. Let $h \in *\mathbb{N} \setminus \mathbb{N}$ and put

$\nu(\emptyset) = 0$, $\nu(\{1, 2\}) = \nu(\{3\}) = h$, $\nu(Y) = 2h$.

Then $\nu : \mathcal{R} \to *[0, \infty]$ is an internal content with

$\mathcal{M}(\nu) = \{\emptyset, \{3\}, \{1, 2\}, Y\}$ and $\mathcal{M}(\mathcal{R}) = \mathcal{P}(Y)$.

As $\mathcal{M}_0 = \{\emptyset\}$ we have

$\nu|\mathcal{M}(\nu)$ is not a saturated measure;

$\mathcal{M}(\nu) \not\subseteq \mathcal{M}(\mathcal{R})$.
(ii) Let $Y \neq \emptyset$, $R := \{\emptyset\}$ and $\nu(\emptyset) = 0$. Then ν is an internal content where $\nu(A) = 0$ for each $A \subset Y$ and $\overline{\nu}(A) = \infty$ for each $\emptyset \neq A \subset Y$. Therefore $\mathcal{M}(\nu) = \mathcal{M}(\overline{\nu}) = \mathcal{P}(Y)$ and $\mathcal{M}_0 = \{\emptyset\}$. Hence

$$\mathcal{M}_0 \subset \{A \in \mathcal{M}(\nu) : \nu(A) \in \mathbb{R}\} (= \mathcal{P}(Y))$$

and therefore

$$\mathcal{L}(i_\nu) \subset \{f \in \mathbb{R}^Y : f \text{ is } i_\nu\mathcal{M}(i_\nu)-\text{Lebesgue-integrable}\}.$$

References

Mathematisches Institut der Universität zu Kölne, Weyertal 86, D–50931 Köln, Germany

E-mail address: landers@mi.uni-koeln.de

Fachbereich Mathematik der Gerhard-Mercator-Universität GHS Duisburg, Lotharstrasse 65, D–47048 Duisburg, Germany

E-mail address: rogge@math.uni-duisburg.de