Frequently hypercyclic operators
Authors:
Frédéric Bayart and Sophie Grivaux
Journal:
Trans. Amer. Math. Soc. 358 (2006), 5083-5117
MSC (2000):
Primary 47A16, 47A35, 37B05, 37A05
DOI:
https://doi.org/10.1090/S0002-9947-06-04019-0
Published electronically:
June 20, 2006
MathSciNet review:
2231886
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We investigate the subject of linear dynamics by studying the notion of frequent hypercyclicity for bounded operators on separable complex
-spaces:
is frequently hypercyclic if there exists a vector
such that for every nonempty open subset
of
, the set of integers
such that
belongs to
has positive lower density. We give several criteria for frequent hypercyclicity, and this leads us in particular to study linear transformations from the point of view of ergodic theory. Several other topics which are classical in hypercyclicity theory are also investigated in the frequent hypercyclicity setting.
- 1. Evgeny Abakumov and Julia Gordon, Common hypercyclic vectors for multiples of backward shift, J. Funct. Anal. 200 (2003), no. 2, 494–504. MR 1979020, https://doi.org/10.1016/S0022-1236(02)00030-7
- 2. Shamim I. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995), no. 2, 374–383. MR 1319961, https://doi.org/10.1006/jfan.1995.1036
- 3. Shamim I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (1997), no. 2, 384–390. MR 1469346, https://doi.org/10.1006/jfan.1996.3093
- 4. Frédéric Bayart and Sophie Grivaux, Hypercyclicité: le rôle du spectre ponctuel unimodulaire, C. R. Math. Acad. Sci. Paris 338 (2004), no. 9, 703–708 (French, with English and French summaries). MR 2065378, https://doi.org/10.1016/j.crma.2004.02.012
- 5. Frédéric Bayart and Sophie Grivaux, Hypercyclicity and unimodular point spectrum, J. Funct. Anal. 226 (2005), no. 2, 281–300. MR 2159459, https://doi.org/10.1016/j.jfa.2005.06.001
- 6.
F. BAYART, S. GRIVAUX,
Invariant gaussian measures for operators on Banach spaces and linear dynamics, to appear in Proc. London Math. Soc. - 7. Luis Bernal-González, On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc. 127 (1999), no. 4, 1003–1010. MR 1476119, https://doi.org/10.1090/S0002-9939-99-04657-2
- 8. Teresa Bermúdez, Antonio Bonilla, and Alfredo Peris, On hypercyclicity and supercyclicity criteria, Bull. Austral. Math. Soc. 70 (2004), no. 1, 45–54. MR 2079359, https://doi.org/10.1017/S0004972700035802
- 9. Juan P. Bès, Invariant manifolds of hypercyclic vectors for the real scalar case, Proc. Amer. Math. Soc. 127 (1999), no. 6, 1801–1804. MR 1485460, https://doi.org/10.1090/S0002-9939-99-04720-6
- 10. Juan Bès and Alfredo Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), no. 1, 94–112. MR 1710637, https://doi.org/10.1006/jfan.1999.3437
- 11.
G. D. BIRKHOFF,
Démonstration d'un théorème élémentaire sur les fonctions entières,
C. R. Acad. Sci. Paris, 189 (1929), pp 473 - 475. - 12. Vladimir I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. MR 1642391
- 13. Paul S. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc. 118 (1993), no. 3, 845–847. MR 1148021, https://doi.org/10.1090/S0002-9939-1993-1148021-4
- 14. Paul S. Bourdon and Joel H. Shapiro, Hypercyclic operators that commute with the Bergman backward shift, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5293–5316. MR 1778507, https://doi.org/10.1090/S0002-9947-00-02648-9
- 15. Paul S. Bourdon and Joel H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997), no. 596, x+105. MR 1396955, https://doi.org/10.1090/memo/0596
- 16. George Costakis and Martin Sambarino, Genericity of wild holomorphic functions and common hypercyclic vectors, Adv. Math. 182 (2004), no. 2, 278–306. MR 2032030, https://doi.org/10.1016/S0001-8708(03)00079-3
- 17. J. Dixmier and C. Foiaş, Sur le spectre ponctuel d’un opérateur, Hilbert space operators and operator algebras (Proc. Internat. Conf., Tihany, 1970) North-Holland, Amsterdam, 1972, pp. 127–133. Colloq. Math. Soc. János Bolyai, No. 5 (French). MR 0365175
- 18. Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- 19.
N. FELDMAN,
Linear Chaos,
http://home.wlu.edu/~feldmann/research.html. - 20. E. Flytzanis and L. Kanakis, Unimodular eigenvalues and invariant probabilities for some classes of linear operators, Probability theory and mathematical statistics (Vilnius, 1993) TEV, Vilnius, 1994, pp. 277–283. MR 1649581
- 21. E. Flytzanis, Unimodular eigenvalues and linear chaos in Hilbert spaces, Geom. Funct. Anal. 5 (1995), no. 1, 1–13. MR 1312018, https://doi.org/10.1007/BF01928214
- 22.
E. FLYTZANIS,
Mixing properties of linear operators in Hilbert spaces,
Choquet, G. (ed.) et al., Séminaire d'initiation à l'analyse, 34ème année: 1994/1995,
Publ. Math. Univ. Pierre Marie Curie, Exp. No. 6, 117 (1995). - 23.
D. GAIER,
Lectures on complex approximation, Birkhauser Boston, Inc., Boston, MA, 1987. MR 0894920 (88i:30059b) - 24. Eva A. Gallardo-Gutiérrez and Alfonso Montes-Rodríguez, The role of the spectrum in the cyclic behavior of composition operators, Mem. Amer. Math. Soc. 167 (2004), no. 791, x+81. MR 2023381, https://doi.org/10.1090/memo/0791
- 25. Eva A. Gallardo-Gutiérrez and Alfonso Montes-Rodríguez, The role of the angle in supercyclic behavior, J. Funct. Anal. 203 (2003), no. 1, 27–43. MR 1996867, https://doi.org/10.1016/S0022-1236(02)00042-3
- 26.
R. GETHNER AND J. H. SHAPIRO,
Universal vectors for operators on spaces of holomorphic functions,
Proc. Amer. Math. Soc., 100 (1987), pp 281 - 288. MR 0884467 (88g:47060) - 27. Gilles Godefroy and Joel H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229–269. MR 1111569, https://doi.org/10.1016/0022-1236(91)90078-J
- 28. Sophie Grivaux, Construction of operators with prescribed behaviour, Arch. Math. (Basel) 81 (2003), no. 3, 291–299. MR 2013260, https://doi.org/10.1007/s00013-003-0544-3
- 29. Sophie Grivaux, Sums of hypercyclic operators, J. Funct. Anal. 202 (2003), no. 2, 486–503. MR 1990535, https://doi.org/10.1016/S0022-1236(02)00152-0
- 30. Sophie Grivaux, Topologically transitive extensions of bounded operators, Math. Z. 249 (2005), no. 1, 85–96. MR 2106971, https://doi.org/10.1007/s00209-004-0690-8
- 31. Sophie Grivaux, Hypercyclic operators, mixing operators, and the bounded steps problem, J. Operator Theory 54 (2005), no. 1, 147–168. MR 2168865
- 32. Karl-Goswin Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345–381. MR 1685272, https://doi.org/10.1090/S0273-0979-99-00788-0
- 33. K.-G. Grosse-Erdmann, Recent developments in hypercyclicity, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97 (2003), no. 2, 273–286 (English, with English and Spanish summaries). MR 2068180
- 34. Domingo A. Herrero, Hypercyclic operators and chaos, J. Operator Theory 28 (1992), no. 1, 93–103. MR 1259918
- 35. Svante Janson, Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, Cambridge, 1997. MR 1474726
- 36. Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- 37.
A. KECHRIS, A. LOUVEAU,
Descriptive set theory and the structure of sets of uniqueness, London Mathematical Society Lecture Note Series, 128, Cambridge University Press, Cambridge, 1987. MR 0953784 (90a:42008) - 38.
C. KITAI,
Invariant closed sets for linear operators, Ph.D. thesis, Univ. of Toronto, 1982. - 39. Hui Hsiung Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, Vol. 463, Springer-Verlag, Berlin-New York, 1975. MR 0461643
- 40. G. R. MacLane, Sequences of derivatives and normal families, J. Analyse Math. 2 (1952), 72–87 (English, with Hebrew summary). MR 0053231, https://doi.org/10.1007/BF02786968
- 41.
V. MÜLLER,
Local spectral radius formula for operators in Banach spaces,
Czech. Math. Journal, 38 (1988), pp 726 - 729. MR 0962915 (89g:47005) - 42.
L. NIKOLSKAYA,
Geometric properties of system of characteristic vectors and point spectra of linear operators,
Fun. Ann. Appl., 4 (1970), pp 105 - 106. - 43. L. N. Nikol′skaja, Structure of the point spectrum of a linear operator, Mat. Zametki 15 (1974), 149–158 (Russian). MR 0346554
- 44.
E. NORDGREN, P. ROSENTHAL, F. S. WINTROBE,
Invertible composition operators on,
J. Funct. Anal., 73 (1987), pp 324 - 344. MR 0899654 (89c:47044) - 45. Vladimir V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. MR 1949210
- 46. S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17–22. MR 0241956, https://doi.org/10.4064/sm-32-1-17-22
- 47. Héctor N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993–1004. MR 1249890, https://doi.org/10.1090/S0002-9947-1995-1249890-6
- 48. Héctor N. Salas, Supercyclicity and weighted shifts, Studia Math. 135 (1999), no. 1, 55–74. MR 1686371, https://doi.org/10.4064/sm-135-1-55-74
- 49. Joel H. Shapiro, Decomposability and the cyclic behavior of parabolic composition operators, Recent progress in functional analysis (Valencia, 2000) North-Holland Math. Stud., vol. 189, North-Holland, Amsterdam, 2001, pp. 143–157. MR 1861753, https://doi.org/10.1016/S0304-0208(01)80042-6
- 50.
P. WALTERS,
An Introduction to Ergodic Theory,
Graduate Texts in Mathematics, 79, Springer-Verlag, New York, Berlin, 1982. MR 0648108 (84e:28017) - 51. Jochen Wengenroth, Hypercyclic operators on non-locally convex spaces, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1759–1761. MR 1955262, https://doi.org/10.1090/S0002-9939-03-07003-5
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 47A16, 47A35, 37B05, 37A05
Retrieve articles in all journals with MSC (2000): 47A16, 47A35, 37B05, 37A05
Additional Information
Frédéric Bayart
Affiliation:
Laboratoire Bordelais d’Analyse et de Géométrie, UMR 5467, Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence Cedex, France
Email:
bayart@math.u-bordeaux.fr
Sophie Grivaux
Affiliation:
Laboratoire Paul Painlevé, UMR 8524, Université des Sciences et Technologies de Lille, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France
Email:
grivaux@math.univ-lille1.fr
DOI:
https://doi.org/10.1090/S0002-9947-06-04019-0
Keywords:
Hypercyclic operators,
frequently hypercyclic operators,
unimodular point spectrum,
ergodic and weak-mixing measure-preserving linear transformations,
Gaussian measures on Hilbert spaces,
Fock spaces
Received by editor(s):
April 15, 2004
Received by editor(s) in revised form:
November 25, 2004
Published electronically:
June 20, 2006
Additional Notes:
This work was supported in part by the European Community’s Human Potential Programme under contract HPRN-CT-2000-00116 (Analysis and Operators)
Article copyright:
© Copyright 2006
American Mathematical Society